TY - JOUR
TI - A Predicate/State Transformer Semantics for Bayesian Learning
AU - Jacobs, Bart
AU - Zanasi, Fabio
T2 - Electronic Notes in Theoretical Computer Science
T3 - The Thirty-second Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXII)
AB - This paper establishes a link between Bayesian inference (learning) and predicate and state transformer operations from programming semantics and logic. Specifically, a very general definition of backward inference is given via first applying a predicate transformer and then conditioning. Analogously, forward inference involves first conditioning and then applying a state transformer. These definitions are illustrated in many examples in discrete and continuous probability theory and also in quantum theory.
DA - 2016/10/05/
PY - 2016
DO - 10/ggdgbb
DP - ScienceDirect
VL - 325
SP - 185
EP - 200
J2 - Electronic Notes in Theoretical Computer Science
LA - en
SN - 1571-0661
UR - http://www.sciencedirect.com/science/article/pii/S1571066116300883
Y2 - 2019/11/24/12:04:12
KW - Bayesianism
KW - Categorical ML
KW - Categorical probability theory
KW - Effectus theory
KW - Programming language theory
KW - Semantics
ER -
TY - JOUR
TI - Neural Nets via Forward State Transformation and Backward Loss Transformation
AU - Jacobs, Bart
AU - Sprunger, David
T2 - arXiv:1803.09356 [cs]
AB - This article studies (multilayer perceptron) neural networks with an emphasis on the transformations involved --- both forward and backward --- in order to develop a semantical/logical perspective that is in line with standard program semantics. The common two-pass neural network training algorithms make this viewpoint particularly fitting. In the forward direction, neural networks act as state transformers. In the reverse direction, however, neural networks change losses of outputs to losses of inputs, thereby acting like a (real-valued) predicate transformer. In this way, backpropagation is functorial by construction, as shown earlier in recent other work. We illustrate this perspective by training a simple instance of a neural network.
DA - 2018/03/25/
PY - 2018
DP - arXiv.org
UR - http://arxiv.org/abs/1803.09356
Y2 - 2019/11/21/20:40:18
KW - Categorical ML
KW - Effectus theory
KW - Machine learning
ER -