TY - COMP
TI - dmurfet/2simplicialtransformer
AU - Murfet, Daniel
AB - Code for the 2-simplicial Transformer paper. Contribute to dmurfet/2simplicialtransformer development by creating an account on GitHub.
DA - 2019/10/14/T08:10:47Z
PY - 2019
DP - GitHub
LA - Python
UR - https://github.com/dmurfet/2simplicialtransformer
Y2 - 2019/11/22/16:50:05
KW - Abstract machines
KW - Algebra
KW - Implementation
KW - Machine learning
KW - Semantics
ER -
TY - JOUR
TI - Logic and the $2$-Simplicial Transformer
AU - Murfet, Daniel
AU - Clift, James
AU - Doryn, Dmitry
AU - Wallbridge, James
T2 - arXiv:1909.00668 [cs, stat]
AB - We introduce the $2$-simplicial Transformer, an extension of the Transformer which includes a form of higher-dimensional attention generalising the dot-product attention, and uses this attention to update entity representations with tensor products of value vectors. We show that this architecture is a useful inductive bias for logical reasoning in the context of deep reinforcement learning.
DA - 2019/09/02/
PY - 2019
DP - arXiv.org
UR - http://arxiv.org/abs/1909.00668
Y2 - 2019/11/21/20:31:14
KW - Abstract machines
KW - Algebra
KW - Machine learning
KW - Semantics
ER -
TY - COMP
TI - dmurfet/deeplinearlogic
AU - Murfet, Daniel
AB - Deep learning and linear logic. Contribute to dmurfet/deeplinearlogic development by creating an account on GitHub.
DA - 2018/07/14/T01:08:44Z
PY - 2018
DP - GitHub
LA - Jupyter Notebook
UR - https://github.com/dmurfet/deeplinearlogic
Y2 - 2019/11/22/16:44:43
KW - Categorical ML
KW - Implementation
KW - Linear logic
KW - Machine learning
KW - Semantics
ER -
TY - COMP
TI - dmurfet/polysemantics
AU - Murfet, Daniel
AB - Polynomial semantics of linear logic. Contribute to dmurfet/polysemantics development by creating an account on GitHub.
DA - 2018/04/29/T20:41:43Z
PY - 2018
DP - GitHub
LA - Python
UR - https://github.com/dmurfet/polysemantics
Y2 - 2019/11/22/16:45:35
KW - Categorical ML
KW - Implementation
KW - Linear logic
KW - Machine learning
KW - Semantics
ER -
TY - JOUR
TI - A Predicate/State Transformer Semantics for Bayesian Learning
AU - Jacobs, Bart
AU - Zanasi, Fabio
T2 - Electronic Notes in Theoretical Computer Science
T3 - The Thirty-second Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXII)
AB - This paper establishes a link between Bayesian inference (learning) and predicate and state transformer operations from programming semantics and logic. Specifically, a very general definition of backward inference is given via first applying a predicate transformer and then conditioning. Analogously, forward inference involves first conditioning and then applying a state transformer. These definitions are illustrated in many examples in discrete and continuous probability theory and also in quantum theory.
DA - 2016/10/05/
PY - 2016
DO - 10/ggdgbb
DP - ScienceDirect
VL - 325
SP - 185
EP - 200
J2 - Electronic Notes in Theoretical Computer Science
LA - en
SN - 1571-0661
UR - http://www.sciencedirect.com/science/article/pii/S1571066116300883
Y2 - 2019/11/24/12:04:12
KW - Bayesianism
KW - Categorical ML
KW - Categorical probability theory
KW - Effectus theory
KW - Programming language theory
KW - Semantics
ER -
TY - SLIDE
TI - Linear logic and deep learning
A2 - Murfet, Daniel
A2 - Hu, Huiyi
LA - en
KW - Categorical ML
KW - Linear logic
KW - Machine learning
KW - Semantics
ER -