TY - JOUR
TI - Differential Categories Revisited
AU - Blute, R. F.
AU - Cockett, J. R. B.
AU - Lemay, J.-S. P.
AU - Seely, R. A. G.
T2 - Applied Categorical Structures
AB - Differential categories were introduced to provide a minimal categorical doctrine for differential linear logic. Here we revisit the formalism and, in particular, examine the two different approaches to defining differentiation which were introduced. The basic approach used a deriving transformation, while a more refined approach, in the presence of a bialgebra modality, used a codereliction. The latter approach is particularly relevant to linear logic settings, where the coalgebra modality is monoidal and the Seely isomorphisms give rise to a bialgebra modality. Here, we prove that these apparently distinct notions of differentiation, in the presence of a monoidal coalgebra modality, are completely equivalent. Thus, for linear logic settings, there is only one notion of differentiation. This paper also presents a number of separating examples for coalgebra modalities including examples which are and are not monoidal, as well as examples which do and do not support differential structure. Of particular interest is the observation that—somewhat counter-intuitively—differential algebras never induce a differential category although they provide a monoidal coalgebra modality. On the other hand, Rota–Baxter algebras—which are usually associated with integration—provide an example of a differential category which has a non-monoidal coalgebra modality.
DA - 2019/07/04/
PY - 2019
DO - 10/ggdm44
DP - Springer Link
J2 - Appl Categor Struct
LA - en
SN - 1572-9095
UR - https://doi.org/10.1007/s10485-019-09572-y
Y2 - 2019/11/28/16:23:18
KW - Differential Linear Logic
KW - Differentiation
KW - Linear logic
ER -
TY - CONF
TI - The Geometry of Bayesian Programming
AU - Dal Lago, Ugo
AU - Hoshino, Naohiko
DA - 2019/06/01/
PY - 2019
DO - 10/ggdk85
DP - ResearchGate
SP - 1
EP - 13
KW - Bayesian inference
KW - Denotational semantics
KW - Linear logic
KW - Probabilistic programming
KW - Programming language theory
KW - Rewriting theory
KW - Transition systems
ER -
TY - JOUR
TI - Differentials and distances in probabilistic coherence spaces
AU - Ehrhard, Thomas
T2 - arXiv:1902.04836 [cs]
AB - In probabilistic coherence spaces, a denotational model of probabilistic functional languages, mor-phisms are analytic and therefore smooth. We explore two related applications of the corresponding derivatives. First we show how derivatives allow to compute the expectation of execution time in the weak head reduction of probabilistic PCF (pPCF). Next we apply a general notion of "local" differential of morphisms to the proof of a Lipschitz property of these morphisms allowing in turn to relate the observational distance on pPCF terms to a distance the model is naturally equipped with. This suggests that extending probabilistic programming languages with derivatives, in the spirit of the differential lambda-calculus, could be quite meaningful.
DA - 2019/02/13/
PY - 2019
DP - arXiv.org
UR - http://arxiv.org/abs/1902.04836
Y2 - 2019/11/28/11:57:10
KW - Coherence spaces
KW - Denotational semantics
KW - Differential Linear Logic
KW - Differentiation
KW - Linear logic
KW - Probabilistic programming
KW - Programming language theory
ER -
TY - JOUR
TI - Derivatives of Turing machines in Linear Logic
AU - Murfet, Daniel
AU - Clift, James
T2 - arXiv:1805.11813 [math]
AB - We calculate denotations under the Sweedler semantics of the Ehrhard-Regnier derivatives of various encodings of Turing machines into linear logic. We show that these derivatives calculate the rate of change of probabilities naturally arising in the Sweedler semantics of linear logic proofs. The resulting theory is applied to the problem of synthesising Turing machines by gradient descent.
DA - 2019/01/28/
PY - 2019
DP - arXiv.org
UR - http://arxiv.org/abs/1805.11813
Y2 - 2019/11/21/20:33:27
KW - Abstract machines
KW - Categorical ML
KW - Differentiation
KW - Linear logic
KW - Machine learning
ER -
TY - CONF
TI - Higher-Order Distributions for Differential Linear Logic
AU - Kerjean, Marie
AU - Pacaud Lemay, Jean-Simon
A2 - Bojańczyk, Mikołaj
A2 - Simpson, Alex
T3 - Lecture Notes in Computer Science
AB - Linear Logic was introduced as the computational counterpart of the algebraic notion of linearity. Differential Linear Logic refines Linear Logic with a proof-theoretical interpretation of the geometrical process of differentiation. In this article, we construct a polarized model of Differential Linear Logic satisfying computational constraints such as an interpretation for higher-order functions, as well as constraints inherited from physics such as a continuous interpretation for spaces. This extends what was done previously by Kerjean for first order Differential Linear Logic without promotion. Concretely, we follow the previous idea of interpreting the exponential of Differential Linear Logic as a space of higher-order distributions with compact-support, which is constructed as an inductive limit of spaces of distributions on Euclidean spaces. We prove that this exponential is endowed with a co-monadic like structure, with the notable exception that it is functorial only on isomorphisms. Interestingly, as previously argued by Ehrhard, this still allows the interpretation of differential linear logic without promotion.
C1 - Cham
C3 - Foundations of Software Science and Computation Structures
DA - 2019///
PY - 2019
DO - 10/ggdmrj
DP - Springer Link
SP - 330
EP - 347
LA - en
PB - Springer International Publishing
SN - 978-3-030-17127-8
KW - Denotational semantics
KW - Differential Linear Logic
KW - Differentiation
KW - Linear logic
ER -
TY - COMP
TI - dmurfet/deeplinearlogic
AU - Murfet, Daniel
AB - Deep learning and linear logic. Contribute to dmurfet/deeplinearlogic development by creating an account on GitHub.
DA - 2018/07/14/T01:08:44Z
PY - 2018
DP - GitHub
LA - Jupyter Notebook
UR - https://github.com/dmurfet/deeplinearlogic
Y2 - 2019/11/22/16:44:43
KW - Categorical ML
KW - Implementation
KW - Linear logic
KW - Machine learning
KW - Semantics
ER -
TY - COMP
TI - dmurfet/polysemantics
AU - Murfet, Daniel
AB - Polynomial semantics of linear logic. Contribute to dmurfet/polysemantics development by creating an account on GitHub.
DA - 2018/04/29/T20:41:43Z
PY - 2018
DP - GitHub
LA - Python
UR - https://github.com/dmurfet/polysemantics
Y2 - 2019/11/22/16:45:35
KW - Categorical ML
KW - Implementation
KW - Linear logic
KW - Machine learning
KW - Semantics
ER -
TY - JOUR
TI - Probabilistic call by push value
AU - Ehrhard, Thomas
AU - Tasson, Christine
T2 - arXiv:1607.04690 [cs]
AB - We introduce a probabilistic extension of Levy's Call-By-Push-Value. This extension consists simply in adding a " flipping coin " boolean closed atomic expression. This language can be understood as a major generalization of Scott's PCF encompassing both call-by-name and call-by-value and featuring recursive (possibly lazy) data types. We interpret the language in the previously introduced denotational model of probabilistic coherence spaces, a categorical model of full classical Linear Logic, interpreting data types as coalgebras for the resource comonad. We prove adequacy and full abstraction, generalizing earlier results to a much more realistic and powerful programming language.
DA - 2018///
PY - 2018
DO - 10/ggdk8z
DP - arXiv.org
UR - http://arxiv.org/abs/1607.04690
Y2 - 2019/11/27/20:51:36
KW - Denotational semantics
KW - Linear logic
KW - Probabilistic programming
KW - Programming language theory
ER -
TY - JOUR
TI - An introduction to Differential Linear Logic: proof-nets, models and antiderivatives
AU - Ehrhard, Thomas
T2 - arXiv:1606.01642 [cs]
AB - Differential Linear Logic enriches Linear Logic with additional logical rules for the exponential connectives, dual to the usual rules of dereliction, weakening and contraction. We present a proof-net syntax for Differential Linear Logic and a categorical axiomatization of its denotational models. We also introduce a simple categorical condition on these models under which a general antiderivative operation becomes available. Last we briefly describe the model of sets and relations and give a more detailed account of the model of finiteness spaces and linear and continuous functions.
DA - 2016/06/06/
PY - 2016
DP - arXiv.org
ST - An introduction to Differential Linear Logic
UR - http://arxiv.org/abs/1606.01642
Y2 - 2019/11/28/11:52:31
KW - Denotational semantics
KW - Differential Linear Logic
KW - Differentiation
KW - Linear logic
ER -
TY - CONF
TI - Probabilistic coherence spaces are fully abstract for probabilistic PCF
AU - Ehrhard, Thomas
AU - Tasson, Christine
AU - Pagani, Michele
T2 - the 41st ACM SIGPLAN-SIGACT Symposium
AB - Probabilistic coherence spaces (PCoh) yield a semantics of higherorder probabilistic computation, interpreting types as convex sets and programs as power series. We prove that the equality of interpretations in PCoh characterizes the operational indistinguishability of programs in PCF with a random primitive.
C1 - San Diego, California, USA
C3 - Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL '14
DA - 2014///
PY - 2014
DO - 10/ggdf9x
DP - Crossref
SP - 309
EP - 320
LA - en
PB - ACM Press
SN - 978-1-4503-2544-8
UR - http://dl.acm.org/citation.cfm?doid=2535838.2535865
Y2 - 2019/11/22/17:00:49
KW - Coherence spaces
KW - Probabilistic programming
KW - Programming language theory
KW - Semantics
ER -
TY - JOUR
TI - Probabilistic coherence spaces as a model of higher-order probabilistic computation
AU - Ehrhard, Thomas
AU - Danos, Vincent
T2 - Information and Computation
AB - We study a probabilistic version of coherence spaces and show that these objects provide a model of linear logic. We build a model of the pure lambda-calculus in this setting and show how to interpret a probabilistic version of the functional language PCF. We give a probabilistic interpretation of the semantics of probabilistic PCF closed terms of ground type. Last we suggest a generalization of this approach, using Banach spaces.
DA - 2011/06/01/
PY - 2011
DO - 10/ctfch6
DP - ScienceDirect
VL - 209
IS - 6
SP - 966
EP - 991
J2 - Information and Computation
LA - en
SN - 0890-5401
UR - http://www.sciencedirect.com/science/article/pii/S0890540111000411
Y2 - 2019/11/22/17:01:53
KW - Coherence spaces
KW - Probabilistic programming
KW - Programming language theory
KW - Semantics
ER -
TY - CONF
TI - The Computational Meaning of Probabilistic Coherence Spaces
AU - Ehrhard, Thomas
AU - Pagani, Michele
AU - Tasson, Christine
T2 - 2011 26th Annual IEEE Symposium on Logic in Computer Science (LICS 2011)
AB - We study the probabilistic coherent spaces — a denotational semantics interpreting programs by power series with non negative real coefﬁcients. We prove that this semantics is adequate for a probabilistic extension of the untyped λ-calculus: the probability that a term reduces to a head normal form is equal to its denotation computed on a suitable set of values. The result gives, in a probabilistic setting, a quantitative reﬁnement to the adequacy of Scott’s model for untyped λ-calculus.
C1 - Toronto, ON, Canada
C3 - 2011 IEEE 26th Annual Symposium on Logic in Computer Science
DA - 2011/06//
PY - 2011
DO - 10/cpv52n
DP - Crossref
SP - 87
EP - 96
LA - en
PB - IEEE
SN - 978-1-4577-0451-2
UR - http://ieeexplore.ieee.org/document/5970206/
Y2 - 2019/11/26/20:50:00
KW - Coherence spaces
KW - Denotational semantics
KW - Probabilistic programming
KW - Programming language theory
ER -
TY - JOUR
TI - A convenient differential category
AU - Blute, Richard
AU - Ehrhard, Thomas
AU - Tasson, Christine
T2 - arXiv:1006.3140 [cs, math]
AB - In this paper, we show that the category of Mackey-complete, separated, topological convex bornological vector spaces and bornological linear maps is a differential category. Such spaces were introduced by Fr\"olicher and Kriegl, where they were called convenient vector spaces. While much of the structure necessary to demonstrate this observation is already contained in Fr\"olicher and Kriegl's book, we here give a new interpretation of the category of convenient vector spaces as a model of the differential linear logic of Ehrhard and Regnier. Rather than base our proof on the abstract categorical structure presented by Fr\"olicher and Kriegl, we prefer to focus on the bornological structure of convenient vector spaces. We believe bornological structures will ultimately yield a wide variety of models of differential logics.
DA - 2010/06/16/
PY - 2010
DP - arXiv.org
UR - http://arxiv.org/abs/1006.3140
Y2 - 2019/11/28/18:10:01
KW - Differential Linear Logic
KW - Differentiation
KW - Linear logic
ER -
TY - JOUR
TI - The cartesian closed bicategory of generalised species of structures
AU - Fiore, M.
AU - Gambino, N.
AU - Hyland, M.
AU - Winskel, G.
T2 - Journal of the London Mathematical Society
AB - The concept of generalised species of structures between small categories and, correspondingly, that of generalised analytic functor between presheaf categories are introduced. An operation of substitution for generalised species, which is the counterpart to the composition of generalised analytic functors, is also put forward. These deﬁnitions encompass most notions of combinatorial species considered in the literature—including of course Joyal’s original notion—together with their associated substitution operation. Our ﬁrst main result exhibits the substitution calculus of generalised species as arising from a Kleisli bicategory for a pseudo-comonad on profunctors. Our second main result establishes that the bicategory of generalised species of structures is cartesian closed.
DA - 2008/02//
PY - 2008
DO - 10/bd2mr9
DP - Crossref
VL - 77
IS - 1
SP - 203
EP - 220
LA - en
SN - 00246107
UR - http://doi.wiley.com/10.1112/jlms/jdm096
Y2 - 2019/11/28/16:31:36
KW - Denotational semantics
KW - Differential Linear Logic
KW - Differentiation
KW - Linear logic
ER -
TY - CONF
TI - Differential Structure in Models of Multiplicative Biadditive Intuitionistic Linear Logic
AU - Fiore, Marcelo P.
A2 - Della Rocca, Simona Ronchi
T3 - Lecture Notes in Computer Science
AB - In the first part of the paper I investigate categorical models of multiplicative biadditive intuitionistic linear logic, and note that in them some surprising coherence laws arise. The thesis for the second part of the paper is that these models provide the right framework for investigating differential structure in the context of linear logic. Consequently, within this setting, I introduce a notion of creation operator (as considered by physicists for bosonic Fock space in the context of quantum field theory), provide an equivalent description of creation operators in terms of creation maps, and show that they induce a differential operator satisfying all the basic laws of differentiation (the product and chain rules, the commutation relations, etc.).
C1 - Berlin, Heidelberg
C3 - Typed Lambda Calculi and Applications
DA - 2007///
PY - 2007
DO - 10/c8vgx8
DP - Springer Link
SP - 163
EP - 177
LA - en
PB - Springer
SN - 978-3-540-73228-0
KW - Differential Linear Logic
KW - Differentiation
KW - Linear logic
ER -
TY - JOUR
TI - Differential interaction nets
AU - Ehrhard, T.
AU - Regnier, L.
T2 - Theoretical Computer Science
T3 - Logic, Language, Information and Computation
AB - We introduce interaction nets for a fragment of the differential lambda-calculus and exhibit in this framework a new symmetry between the of course and the why not modalities of linear logic, which is completely similar to the symmetry between the tensor and par connectives of linear logic. We use algebraic intuitions for introducing these nets and their reduction rules, and then we develop two correctness criteria (weak typability and acyclicity) and show that they guarantee strong normalization. Finally, we outline the correspondence between this interaction nets formalism and the resource lambda-calculus.
DA - 2006/11/06/
PY - 2006
DO - 10/bg5g4b
DP - ScienceDirect
VL - 364
IS - 2
SP - 166
EP - 195
J2 - Theoretical Computer Science
LA - en
SN - 0304-3975
UR - http://www.sciencedirect.com/science/article/pii/S0304397506005299
Y2 - 2019/11/28/16:33:46
KW - Differential Linear Logic
KW - Differentiation
KW - Linear logic
ER -
TY - JOUR
TI - The differential lambda-calculus
AU - Ehrhard, Thomas
AU - Regnier, Laurent
T2 - Theoretical Computer Science
AB - We present an extension of the lambda-calculus with differential constructions. We state and prove some basic results (confluence, strong normalization in the typed case), and also a theorem relating the usual Taylor series of analysis to the linear head reduction of lambda-calculus.
DA - 2003/12/02/
PY - 2003
DO - 10/bf3b8v
DP - ScienceDirect
VL - 309
IS - 1
SP - 1
EP - 41
J2 - Theoretical Computer Science
LA - en
SN - 0304-3975
UR - http://www.sciencedirect.com/science/article/pii/S030439750300392X
Y2 - 2019/11/24/17:23:34
KW - Differentiation
KW - Linear logic
KW - Programming language theory
ER -
TY - JOUR
TI - Geometry of Interaction and Linear Combinatory Algebras
AU - Abramsky, Samson
AU - Haghverdi, Esfandiar
AU - Scott, Philip
T2 - Mathematical. Structures in Comp. Sci.
AB - We present an axiomatic framework for Girard's Geometry of Interaction based on the notion of linear combinatory algebra. We give a general construction on traced monoidal categories, with certain additional structure, that is sufficient to capture the exponentials of Linear Logic, which produces such algebras (and hence also ordinary combinatory algebras). We illustrate the construction on six standard examples, representing both the ‘particle-style’ as well as the ‘wave-style’ Geometry of Interaction.
DA - 2002/10//
PY - 2002
DO - 10/fcsmhm
DP - ACM Digital Library
VL - 12
IS - 5
SP - 625
EP - 665
SN - 0960-1295
UR - http://dx.doi.org/10.1017/S0960129502003730
Y2 - 2019/11/28/15:33:04
KW - Interactive semantics
KW - Linear logic
ER -
TY - CONF
TI - On Geometry of Interaction
AU - Girard, Jean-Yves
A2 - Schwichtenberg, Helmut
T3 - NATO ASI Series
AB - The paper expounds geometry of interaction, for the first time in the full case, i.e. for all connectives of linear logic, including additives and constants. The interpretation is done within a C*-algebra which is induced by the rule of resolution of logic programming, and therefore the execution formula can be presented as a simple logic programming loop. Part of the data is public (shared channels) but part of it can be viewed as private dialect (defined up to isomorphism) that cannot be shared during interaction, thus illustrating the theme of communication without understanding. One can prove a nilpotency (i.e. termination) theorem for this semantics, and also its soundness w.r.t. a slight modification of familiar sequent calculus in the case of exponential-free conclusions.
C1 - Berlin, Heidelberg
C3 - Proof and Computation
DA - 1995///
PY - 1995
DO - 10/fr557p
DP - Springer Link
SP - 145
EP - 191
LA - en
PB - Springer
SN - 978-3-642-79361-5
KW - Interactive semantics
KW - Linear logic
ER -
TY - JOUR
TI - Linear logic
AU - Girard, Jean-Yves
T2 - Theoretical Computer Science
AB - The familiar connective of negation is broken into two operations: linear negation which is the purely negative part of negation and the modality “of course” which has the meaning of a reaffirmation. Following this basic discovery, a completely new approach to the whole area between constructive logics and programmation is initiated.
DA - 1987/01/01/
PY - 1987
DO - 10/cmv5mj
DP - ScienceDirect
VL - 50
IS - 1
SP - 1
EP - 101
J2 - Theoretical Computer Science
LA - en
SN - 0304-3975
UR - http://www.sciencedirect.com/science/article/pii/0304397587900454
Y2 - 2019/11/26/21:07:06
KW - Denotational semantics
KW - Linear logic
KW - Type theory
ER -
TY - SLIDE
TI - Linear logic and deep learning
A2 - Murfet, Daniel
A2 - Hu, Huiyi
LA - en
KW - Categorical ML
KW - Linear logic
KW - Machine learning
KW - Semantics
ER -