@incollection{yang_commutative_2017,
address = {Berlin, Heidelberg},
title = {Commutative {Semantics} for {Probabilistic} {Programming}},
volume = {10201},
isbn = {978-3-662-54433-4 978-3-662-54434-1},
url = {http://link.springer.com/10.1007/978-3-662-54434-1_32},
abstract = {We show that a measure-based denotational semantics for probabilistic programming is commutative. The idea underlying probabilistic programming languages (Anglican, Church, Hakaru, ...) is that programs express statistical models as a combination of prior distributions and likelihood of observations. The product of prior and likelihood is an unnormalized posterior distribution, and the inference problem is to ﬁnd the normalizing constant. One common semantic perspective is thus that a probabilistic program is understood as an unnormalized posterior measure, in the sense of measure theory, and the normalizing constant is the measure of the entire semantic domain.},
language = {en},
urldate = {2019-11-23},
booktitle = {Programming {Languages} and {Systems}},
publisher = {Springer Berlin Heidelberg},
author = {Staton, Sam},
editor = {Yang, Hongseok},
year = {2017},
doi = {10.1007/978-3-662-54434-1_32},
note = {ZSCC: NoCitationData[s0] },
keywords = {Bayesianism, Probabilistic programming, Programming language theory, Semantics},
pages = {855--879}
}