@inproceedings{de_vink_bisimulation_1997,
address = {Berlin, Heidelberg},
series = {Lecture {Notes} in {Computer} {Science}},
title = {Bisimulation for probabilistic transition systems: {A} coalgebraic approach},
isbn = {978-3-540-69194-5},
shorttitle = {Bisimulation for probabilistic transition systems},
doi = {10/fcqzmk},
abstract = {The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendier in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation.},
language = {en},
booktitle = {Automata, {Languages} and {Programming}},
publisher = {Springer},
author = {de Vink, E. P. and Rutten, J. J. M. M.},
editor = {Degano, Pierpaolo and Gorrieri, Roberto and Marchetti-Spaccamela, Alberto},
year = {1997},
note = {ZSCC: NoCitationData[s1]},
keywords = {Categorical probability theory, Coalgebras, Denotational semantics, Probabilistic transition systems, Transition systems},
pages = {460--470}
}