@article{jacobs_formal_2017,
title = {A {Formal} {Semantics} of {Influence} in {Bayesian} {Reasoning}},
url = {http://drops.dagstuhl.de/opus/volltexte/2017/8089/},
doi = {10/ggdgbc},
abstract = {This paper proposes a formal deﬁnition of inﬂuence in Bayesian reasoning, based on the notions of state (as probability distribution), predicate, validity and conditioning. Our approach highlights how conditioning a joint entwined/entangled state with a predicate on one of its components has ‘crossover’ inﬂuence on the other components. We use the total variation metric on probability distributions to quantitatively measure such inﬂuence. These insights are applied to give a rigorous explanation of the fundamental concept of d-separation in Bayesian networks.},
language = {en},
urldate = {2019-11-24},
journal = {Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany},
author = {Jacobs, Bart and Zanasi, Fabio},
year = {2017},
note = {ZSCC: 0000012},
keywords = {Bayesianism, Categorical probability theory, Programming language theory, Semantics}
}