Your search
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Publication year
Results
4 resources-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
-
Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc
-
Heunen, C., Kammar, O., Staton, S., & Yang, H. (2017). A Convenient Category for Higher-Order Probability Theory. ArXiv:1701.02547 [Cs, Math]. Retrieved from http://arxiv.org/abs/1701.02547
-
Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., … Ghahramani, Z. (2017). Denotational validation of higher-order Bayesian inference. Proceedings of the ACM on Programming Languages, 2(POPL), 1–29. https://doi.org/10.1145/3158148
Explore
CATEGORICAL LOGIC
- Effectus theory (1)
MACHINE LEARNING
- Machine Learning (1)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Topic
- Bayesianism (2)
- Categorical ML (1)
- Categorical probability theory (2)
- Effectus theory (1)
- Programming language theory (2)
- Semantics (2)
Resource type
- Journal Article (4)
Publication year
Online resource
- yes (4)