Your search
PROBABILITY & STATISTICS
Publication year
Results
29 resources-
Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., & Carbin, M. (2019). Reactive Probabilistic Programming. ArXiv:1908.07563 [Cs]. Retrieved from http://arxiv.org/abs/1908.07563
-
Wilkinson, D. (2019, August 7). Write your own general-purpose monadic probabilistic programming language from scratch in 50 lines of (Scala) code. Retrieved November 27, 2019, from https://darrenjw.wordpress.com/2019/08/07/write-your-own-general-purpose-monadic-probabilistic-programming-language-from-scratch-in-50-lines-of-scala-code/
-
Law, J., & Wilkinson, D. (2019). Functional probabilistic programming for scalable Bayesian modelling. ArXiv:1908.02062 [Stat]. Retrieved from http://arxiv.org/abs/1908.02062
-
Jacobs, B., Kissinger, A., & Zanasi, F. (2019). Causal Inference by String Diagram Surgery. ArXiv:1811.08338 [Cs, Math]. Retrieved from http://arxiv.org/abs/1811.08338
-
Dal Lago, U., & Hoshino, N. (2019). The Geometry of Bayesian Programming (pp. 1–13). https://doi.org/10/ggdk85
-
Winn, J. M. (2019). Model-Based Machine Learning. Taylor & Francis Incorporated.
-
Wilkinson, D. (2019). A compositional approach to scalable Bayesian computation and probabilistic programming.
-
Jacobs, B., & Cho, K. (2019). Disintegration and Bayesian Inversion via String Diagrams. Mathematical Structures in Computer Science, 29(7), 938–971. https://doi.org/10/ggdf9v
-
Vákár, M., Kammar, O., & Staton, S. (2018). A Domain Theory for Statistical Probabilistic Programming. ArXiv:1811.04196 [Cs]. Retrieved from http://arxiv.org/abs/1811.04196
-
Jacobs, B. (2018). Categorical Aspects of Parameter Learning. ArXiv:1810.05814 [Cs]. Retrieved from http://arxiv.org/abs/1810.05814
-
Ścibior, A., Kammar, O., & Ghahramani, Z. (2018). Functional programming for modular Bayesian inference. Proceedings of the ACM on Programming Languages, 2(ICFP), 1–29. https://doi.org/10/gft39x
-
Jacobs, B., & Zanasi, F. (2018). The Logical Essentials of Bayesian Reasoning. ArXiv:1804.01193 [Cs]. Retrieved from http://arxiv.org/abs/1804.01193
-
Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., … Ghahramani, Z. (2017). Denotational validation of higher-order Bayesian inference. Proceedings of the ACM on Programming Languages, 2(POPL), 1–29. https://doi.org/10.1145/3158148
-
Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017). Deep Probabilistic Programming. ArXiv:1701.03757 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1701.03757
-
Clerc, F., Danos, V., Dahlqvist, F., & Garnier, I. (2017). Pointless learning (long version). Retrieved from https://hal.archives-ouvertes.fr/hal-01429663
-
Staton, S. (2017). Commutative Semantics for Probabilistic Programming. In H. Yang (Ed.), Programming Languages and Systems (Vol. 10201, pp. 855–879). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54434-1_32
-
Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc
-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
-
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, 525–534. https://doi.org/10/ggdf97
-
Jacobs, B., & Adams, R. (2015). A Type Theory for Probabilistic and Bayesian Reasoning. ArXiv:1511.09230 [Cs, Math]. Retrieved from http://arxiv.org/abs/1511.09230
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (1)
CATEGORICAL LOGIC
- Effectus theory (2)
- Linear logic (1)
DIFFERENTIAL CALCULUS
- Differentiation (1)
MACHINE LEARNING
- Machine Learning (9)
MODEL CHECKING AND STATE MACHINES
- Rewriting theory (2)
- Transition systems (2)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
- Programming language theory (17)
- Type theory (1)
Methodology
- Compendium (1)
- Implementation (12)
Topic
- Algebra (1)
- Automatic differentiation (1)
- Bayesian inference (12)
- Bayesianism (14)
- Biology (1)
- Categorical ML (4)
- Categorical probability theory (9)
- Classical ML (3)
- Compendium (1)
- Denotational semantics (2)
- Differentiation (1)
- Effectus theory (2)
- Implementation (11)
- Linear logic (1)
- Machine learning (4)
- Probabilistic programming (13)
- Programming language theory (10)
- Purely theoretical (4)
- Rewriting theory (2)
- Semantics (4)
- Statistical learning theory (2)
- Systems biology (1)
- Transition systems (2)
- Type theory (1)
Resource type
- Blog Post (1)
- Book (2)
- Book Section (2)
- Conference Paper (2)
- Journal Article (19)
- Manuscript (1)
- Presentation (1)
- Web Page (1)