Your search
MACHINE LEARNING
Publication year
Results
39 resources-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
-
Kurakin, A., Goodfellow, I., & Bengio, S. (2017). Adversarial examples in the physical world. ArXiv:1607.02533 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1607.02533
-
Brown, T. B., Mané, D., Roy, A., Abadi, M., & Gilmer, J. (2018). Adversarial Patch. ArXiv:1712.09665 [Cs]. Retrieved from http://arxiv.org/abs/1712.09665
-
Izbicki, M. (2013). Algebraic classifiers: a generic approach to fast cross-validation, online training, and parallel training. In ICML.
-
Watanabe, S. (2009, August). Algebraic Geometry and Statistical Learning Theory. https://doi.org/10.1017/CBO9780511800474
-
Martin-Maroto, F., & de Polavieja, G. G. (2018). Algebraic Machine Learning. ArXiv:1803.05252 [Cs, Math]. Retrieved from http://arxiv.org/abs/1803.05252
-
Borchert, T. (2019). amzn/milan. Amazon. Retrieved from https://github.com/amzn/milan (Original work published 2019)
-
Hamrick, J. B. (2019). Analogues of mental simulation and imagination in deep learning. Current Opinion in Behavioral Sciences, 29, 8–16. https://doi.org/10.1016/j.cobeha.2018.12.011
-
Olah, C., & Carter, S. (2016). Attention and Augmented Recurrent Neural Networks. Distill, 1(9), e1. https://doi.org/10/gf33sg
-
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine learning: a survey. ArXiv:1502.05767 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1502.05767
-
Fong, B., Spivak, D. I., & Tuyéras, R. (2019). Backprop as Functor: A compositional perspective on supervised learning. ArXiv:1711.10455 [Cs, Math]. Retrieved from http://arxiv.org/abs/1711.10455
-
Culbertson, J., & Sturtz, K. (2013). Bayesian machine learning via category theory. ArXiv:1312.1445 [Math]. Retrieved from http://arxiv.org/abs/1312.1445
-
Jacobs, B. (2018). Categorical Aspects of Parameter Learning. ArXiv:1810.05814 [Cs]. Retrieved from http://arxiv.org/abs/1810.05814
-
Harris, K. D. (2019). Characterizing the invariances of learning algorithms using category theory. ArXiv:1905.02072 [Cs, Math, Stat]. Retrieved from http://arxiv.org/abs/1905.02072
-
Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017). Deep Probabilistic Programming. ArXiv:1701.03757 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1701.03757
-
Murfet, D., & Clift, J. (2019). Derivatives of Turing machines in Linear Logic. ArXiv:1805.11813 [Math]. Retrieved from http://arxiv.org/abs/1805.11813
-
Sprunger, D., & Katsumata, S. (2019). Differentiable Causal Computations via Delayed Trace. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (pp. 1–12). Vancouver, BC, Canada: IEEE. https://doi.org/10/ggdf98
-
Murfet, D. (2019). dmurfet/2simplicialtransformer. Retrieved from https://github.com/dmurfet/2simplicialtransformer (Original work published 2019)
-
Murfet, D. (2018). dmurfet/deeplinearlogic. Retrieved from https://github.com/dmurfet/deeplinearlogic (Original work published 2016)
-
Murfet, D. (2018). dmurfet/polysemantics. Retrieved from https://github.com/dmurfet/polysemantics (Original work published 2016)
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (2)
- Neuroscience (3)
CATEGORICAL LOGIC
- Effectus theory (2)
- Linear logic (3)
DIFFERENTIAL CALCULUS
- Differentiation (3)
MACHINE LEARNING
-
Machine Learning
- Adversarial attacks (5)
- Algebraic ML (6)
- Categorical ML (13)
- Classic ML (17)
MODEL CHECKING AND STATE MACHINES
- Symbolic logic (3)
- Transition systems (7)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Compendium (2)
- Implementation (7)
- Sketchy (3)
Topic
- Abstract machines (7)
- Adversarial attacks (5)
- Algebra (5)
- Automatic differentiation (1)
- Bayesian inference (3)
- Bayesianism (6)
- Biology (1)
- Categorical ML (11)
- Categorical probability theory (4)
- Classical ML (15)
- Compendium (2)
- Differentiation (3)
- Effectus theory (2)
- Implementation (7)
- Linear logic (3)
- Machine learning (27)
- Neuroscience (1)
- Probabilistic programming (3)
- Programming language theory (1)
- Purely theoretical (4)
- Semantics (5)
- Statistical learning theory (2)
- Symbolic logic (3)
- Systems biology (1)
Resource type
- Book (1)
- Book Section (2)
- Computer Program (4)
- Conference Paper (4)
- Journal Article (27)
- Web Page (1)