Your search
PROGRAMMING LANGUAGES
Publication year
Online resource
Results
30 resources-
Varacca, D., & Winskel, G. (2006). Distributing probability over non-determinism. Mathematical Structures in Computer Science, 16(01), 87. https://doi.org/10/czs9sx
-
van Breugel, F., Mislove, M., Ouaknine, J., & Worrell, J. (2005). Domain theory, testing and simulation for labelled Markov processes. Theoretical Computer Science, 333(1), 171–197. https://doi.org/10/ft9vc5
-
Vákár, M., Kammar, O., & Staton, S. (2018). A Domain Theory for Statistical Probabilistic Programming. ArXiv:1811.04196 [Cs]. Retrieved from http://arxiv.org/abs/1811.04196
-
Tix, R., Keimel, K., & Plotkin, G. (2009). Semantic Domains for Combining Probability and Non-Determinism. Electronic Notes in Theoretical Computer Science, 222, 3–99. https://doi.org/10/d9hwq7
-
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, 525–534. https://doi.org/10/ggdf97
-
Staton, S. (2017). Commutative Semantics for Probabilistic Programming. In H. Yang (Ed.), Programming Languages and Systems (Vol. 10201, pp. 855–879). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54434-1_32
-
Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., … Ghahramani, Z. (2017). Denotational validation of higher-order Bayesian inference. Proceedings of the ACM on Programming Languages, 2(POPL), 1–29. https://doi.org/10.1145/3158148
-
Murfet, D., Clift, J., Doryn, D., & Wallbridge, J. (2019). Logic and the $2$-Simplicial Transformer. ArXiv:1909.00668 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1909.00668
-
Murfet, D. (2018). dmurfet/polysemantics. Retrieved from https://github.com/dmurfet/polysemantics (Original work published 2016)
-
Murfet, D. (2018). dmurfet/deeplinearlogic. Retrieved from https://github.com/dmurfet/deeplinearlogic (Original work published 2016)
-
Murfet, D. (2019). dmurfet/2simplicialtransformer. Retrieved from https://github.com/dmurfet/2simplicialtransformer (Original work published 2019)
-
Keimel, K., & Plotkin, G. d. (2009). Predicate Transformers for Extended Probability and Non-determinism. Mathematical. Structures in Comp. Sci., 19(3), 501–539. https://doi.org/10/bkvgqc
-
Keimel, K., & Plotkin, G. D. (2017). Mixed powerdomains for probability and nondeterminism. ArXiv:1612.01005 [Cs]. https://doi.org/10/ggdmrp
-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
-
Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc
-
Heunen, C., Kammar, O., Staton, S., & Yang, H. (2017). A Convenient Category for Higher-Order Probability Theory. ArXiv:1701.02547 [Cs, Math]. Retrieved from http://arxiv.org/abs/1701.02547
-
Fiore, M., Gambino, N., Hyland, M., & Winskel, G. (2008). The cartesian closed bicategory of generalised species of structures. Journal of the London Mathematical Society, 77(1), 203–220. https://doi.org/10/bd2mr9
-
Fages, F., Martinez, T., Rosenblueth, D. A., & Soliman, S. (2018). Influence Networks Compared with Reaction Networks: Semantics, Expressivity and Attractors. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 15(4), 1138–1151. https://doi.org/10/ggdf94
-
Fages, F., Calzone, L., & Soliman, S. (2006). BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics, 22(14), 1805–1807. https://doi.org/10/dfv
-
Ehrhard, T., Tasson, C., & Pagani, M. (2014). Probabilistic coherence spaces are fully abstract for probabilistic PCF. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’14 (pp. 309–320). San Diego, California, USA: ACM Press. https://doi.org/10/ggdf9x
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (2)
CATEGORICAL LOGIC
- Effectus theory (1)
- Linear logic (10)
DIFFERENTIAL CALCULUS
- Differentiation (4)
MACHINE LEARNING
- Machine Learning (5)
MODEL CHECKING AND STATE MACHINES
- Coalgebras (2)
- Rewriting theory (2)
- Symbolic logic (3)
- Transition systems (6)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Implementation (5)
Topic
- Abstract machines (3)
- Algebra (2)
- Bayesian inference (1)
- Bayesianism (4)
- Biology (2)
- Categorical ML (3)
- Categorical probability theory (3)
- Coalgebras (2)
- Coherence spaces (4)
- Denotational semantics (14)
- Differential Linear Logic (3)
- Differentiation (4)
- Effectus theory (1)
- Game semantics (1)
- Implementation (5)
- Interactive semantics (1)
- Linear logic (7)
- Machine learning (4)
- Powerdomains (3)
- Probabilistic programming (12)
- Probabilistic transition systems (2)
- Programming language theory (17)
- Rewriting theory (2)
- Semantics (10)
- Symbolic logic (3)
- Systems biology (2)
- Transition systems (2)
Resource type
- Book Section (1)
- Computer Program (3)
- Conference Paper (3)
- Journal Article (23)