Your search
MODEL CHECKING AND STATE MACHINES
Publication year
Online resource
Results
15 resources-
Rutten, J. J. M. M. (2000). Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1), 3–80. https://doi.org/10/fqrjpn
-
Boutillier, P., Maasha, M., Li, X., Medina-Abarca, H. F., Krivine, J., Feret, J., … Fontana, W. (2018). The Kappa platform for rule-based modeling. Bioinformatics, 34(13), i583–i592. https://doi.org/10/gdrhw6
-
Sokolova, A. (2011). Probabilistic systems coalgebraically: A survey. Theoretical Computer Science, 412(38), 5095–5110. https://doi.org/10/frbx24
-
Sokolova, A., & de Vink, E. P. (2004). Probabilistic Automata: System Types, Parallel Composition and Comparison. In C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen, & M. Siegle (Eds.), Validation of Stochastic Systems (Vol. 2925, pp. 1–43). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24611-4_1
-
Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing Machines. ArXiv:1410.5401 [Cs]. Retrieved from http://arxiv.org/abs/1410.5401
-
Dong, H., Mao, J., Lin, T., Wang, C., Li, L., & Zhou, D. (2019). Neural Logic Machines. ArXiv:1904.11694 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1904.11694
-
Serafini, L., & Garcez, A. d’Avila. (2016). Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. ArXiv:1606.04422 [Cs]. Retrieved from http://arxiv.org/abs/1606.04422
-
Murfet, D., Clift, J., Doryn, D., & Wallbridge, J. (2019). Logic and the $2$-Simplicial Transformer. ArXiv:1909.00668 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1909.00668
-
Fages, F., Martinez, T., Rosenblueth, D. A., & Soliman, S. (2018). Influence Networks Compared with Reaction Networks: Semantics, Expressivity and Attractors. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 15(4), 1138–1151. https://doi.org/10/ggdf94
-
van Breugel, F., Mislove, M., Ouaknine, J., & Worrell, J. (2005). Domain theory, testing and simulation for labelled Markov processes. Theoretical Computer Science, 333(1), 171–197. https://doi.org/10/ft9vc5
-
Murfet, D. (2019). dmurfet/2simplicialtransformer. Retrieved from https://github.com/dmurfet/2simplicialtransformer (Original work published 2019)
-
Murfet, D., & Clift, J. (2019). Derivatives of Turing machines in Linear Logic. ArXiv:1805.11813 [Math]. Retrieved from http://arxiv.org/abs/1805.11813
-
Desharnais, J., Edalat, A., & Panangaden, P. (2002). Bisimulation for Labelled Markov Processes. Information and Computation, 179(2), 163–193. https://doi.org/10/fmp9vd
-
Fages, F., Calzone, L., & Soliman, S. (2006). BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics, 22(14), 1805–1807. https://doi.org/10/dfv
-
Bartels, F., Sokolova, A., & de Vink, E. (2003). A hierarchy of probabilistic system types. Electronic Notes in Theoretical Computer Science, 82(1), 57–75. https://doi.org/10/d7kq38
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (3)
CATEGORICAL LOGIC
- Linear logic (1)
DIFFERENTIAL CALCULUS
- Differentiation (1)
MACHINE LEARNING
- Machine Learning (6)
MODEL CHECKING AND STATE MACHINES
PROGRAMMING LANGUAGES
Methodology
- Implementation (3)
Topic
- Abstract machines (7)
- Algebra (2)
- Biology (3)
- Categorical ML (1)
- Classical ML (1)
- Coalgebras (6)
- Denotational semantics (2)
- Differentiation (1)
- Implementation (3)
- Linear logic (1)
- Machine learning (6)
- Probabilistic transition systems (5)
- Rewriting theory (3)
- Semantics (2)
- Symbolic logic (5)
- Systems biology (3)
- Transition systems (6)
Resource type
- Book Section (1)
- Computer Program (1)
- Journal Article (13)