Your search
PROGRAMMING LANGUAGES
Resource type
Publication year
Results
34 resources-
Vytiniotis, D., Belov, D., Wei, R., Plotkin, G., & Abadi, M. (2019). The Differentiable Curry. Retrieved from https://openreview.net/forum?id=ryxuz9SzDB
-
Murfet, D., Clift, J., Doryn, D., & Wallbridge, J. (2019). Logic and the $2$-Simplicial Transformer. ArXiv:1909.00668 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1909.00668
-
Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., & Carbin, M. (2019). Reactive Probabilistic Programming. ArXiv:1908.07563 [Cs]. Retrieved from http://arxiv.org/abs/1908.07563
-
Law, J., & Wilkinson, D. (2019). Functional probabilistic programming for scalable Bayesian modelling. ArXiv:1908.02062 [Stat]. Retrieved from http://arxiv.org/abs/1908.02062
-
Ehrhard, T. (2019). Differentials and distances in probabilistic coherence spaces. ArXiv:1902.04836 [Cs]. Retrieved from http://arxiv.org/abs/1902.04836
-
Paquet, H., & Winskel, G. (2018). Continuous Probability Distributions in Concurrent Games. Electronic Notes in Theoretical Computer Science, 341, 321–344. https://doi.org/10/ggdmwv
-
Vákár, M., Kammar, O., & Staton, S. (2018). A Domain Theory for Statistical Probabilistic Programming. ArXiv:1811.04196 [Cs]. Retrieved from http://arxiv.org/abs/1811.04196
-
Ścibior, A., Kammar, O., & Ghahramani, Z. (2018). Functional programming for modular Bayesian inference. Proceedings of the ACM on Programming Languages, 2(ICFP), 1–29. https://doi.org/10/gft39x
-
Boutillier, P., Maasha, M., Li, X., Medina-Abarca, H. F., Krivine, J., Feret, J., … Fontana, W. (2018). The Kappa platform for rule-based modeling. Bioinformatics, 34(13), i583–i592. https://doi.org/10/gdrhw6
-
Fages, F., Martinez, T., Rosenblueth, D. A., & Soliman, S. (2018). Influence Networks Compared with Reaction Networks: Semantics, Expressivity and Attractors. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 15(4), 1138–1151. https://doi.org/10/ggdf94
-
Ehrhard, T., & Tasson, C. (2018). Probabilistic call by push value. ArXiv:1607.04690 [Cs]. https://doi.org/10/ggdk8z
-
Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., … Ghahramani, Z. (2017). Denotational validation of higher-order Bayesian inference. Proceedings of the ACM on Programming Languages, 2(POPL), 1–29. https://doi.org/10.1145/3158148
-
Ehrhard, T., Pagani, M., & Tasson, C. (2017). Measurable Cones and Stable, Measurable Functions. Proceedings of the ACM on Programming Languages, 2(POPL), 1–28. https://doi.org/10/ggdjf8
-
Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017). Deep Probabilistic Programming. ArXiv:1701.03757 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1701.03757
-
Borgström, J., Lago, U. D., Gordon, A. D., & Szymczak, M. (2017). A Lambda-Calculus Foundation for Universal Probabilistic Programming. ArXiv:1512.08990 [Cs]. Retrieved from http://arxiv.org/abs/1512.08990
-
Heunen, C., Kammar, O., Staton, S., & Yang, H. (2017). A Convenient Category for Higher-Order Probability Theory. ArXiv:1701.02547 [Cs, Math]. Retrieved from http://arxiv.org/abs/1701.02547
-
Keimel, K., & Plotkin, G. D. (2017). Mixed powerdomains for probability and nondeterminism. ArXiv:1612.01005 [Cs]. https://doi.org/10/ggdmrp
-
Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc
-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
-
Ehrhard, T. (2016). An introduction to Differential Linear Logic: proof-nets, models and antiderivatives. ArXiv:1606.01642 [Cs]. Retrieved from http://arxiv.org/abs/1606.01642
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (3)
CATEGORICAL LOGIC
- Effectus theory (1)
- Linear logic (7)
DIFFERENTIAL CALCULUS
- Differentiation (7)
MACHINE LEARNING
- Machine Learning (4)
MODEL CHECKING AND STATE MACHINES
- Coalgebras (2)
- Rewriting theory (3)
- Symbolic logic (3)
- Transition systems (6)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Implementation (7)
Topic
- Abstract machines (2)
- Algebra (1)
- Automatic differentiation (3)
- Bayesian inference (6)
- Bayesianism (3)
- Biology (3)
- Categorical ML (1)
- Categorical probability theory (3)
- Classical ML (1)
- Coalgebras (2)
- Coherence spaces (2)
- Denotational semantics (12)
- Differential Linear Logic (3)
- Differentiation (7)
- Effectus theory (1)
- Game semantics (1)
- Implementation (7)
- Interactive semantics (2)
- Linear logic (6)
- Machine learning (3)
- Powerdomains (3)
- Probabilistic programming (15)
- Probabilistic transition systems (2)
- Programming language theory (19)
- Rewriting theory (3)
- Semantics (5)
- Symbolic logic (3)
- Systems biology (3)
- Transition systems (2)