Your search
PROGRAMMING LANGUAGES
Resource type
Publication year
Results
34 resources-
Abramsky, S., Haghverdi, E., & Scott, P. (2002). Geometry of Interaction and Linear Combinatory Algebras. Mathematical. Structures in Comp. Sci., 12(5), 625–665. https://doi.org/10/fcsmhm
-
Desharnais, J., Edalat, A., & Panangaden, P. (2002). Bisimulation for Labelled Markov Processes. Information and Computation, 179(2), 163–193. https://doi.org/10/fmp9vd
-
Ehrhard, T., & Regnier, L. (2003). The differential lambda-calculus. Theoretical Computer Science, 309(1), 1–41. https://doi.org/10/bf3b8v
-
van Breugel, F., Mislove, M., Ouaknine, J., & Worrell, J. (2005). Domain theory, testing and simulation for labelled Markov processes. Theoretical Computer Science, 333(1), 171–197. https://doi.org/10/ft9vc5
-
Varacca, D., & Winskel, G. (2006). Distributing probability over non-determinism. Mathematical Structures in Computer Science, 16(01), 87. https://doi.org/10/czs9sx
-
Fages, F., Calzone, L., & Soliman, S. (2006). BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics, 22(14), 1805–1807. https://doi.org/10/dfv
-
Fiore, M., Gambino, N., Hyland, M., & Winskel, G. (2008). The cartesian closed bicategory of generalised species of structures. Journal of the London Mathematical Society, 77(1), 203–220. https://doi.org/10/bd2mr9
-
Tix, R., Keimel, K., & Plotkin, G. (2009). Semantic Domains for Combining Probability and Non-Determinism. Electronic Notes in Theoretical Computer Science, 222, 3–99. https://doi.org/10/d9hwq7
-
Keimel, K., & Plotkin, G. d. (2009). Predicate Transformers for Extended Probability and Non-determinism. Mathematical. Structures in Comp. Sci., 19(3), 501–539. https://doi.org/10/bkvgqc
-
Ehrhard, T., & Danos, V. (2011). Probabilistic coherence spaces as a model of higher-order probabilistic computation. Information and Computation, 209(6), 966–991. https://doi.org/10/ctfch6
-
Manzyuk, O. (2012). A Simply Typed λ-Calculus of Forward Automatic Differentiation. Electronic Notes in Theoretical Computer Science, 286, 257–272. https://doi.org/10/ggdm57
-
Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10/gdxwhq
-
Hur, C.-K., Nori, A. V., & Rajamani, S. K. (2015). A Provably Correct Sampler for Probabilistic Programs, 21.
-
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, 525–534. https://doi.org/10/ggdf97
-
Ehrhard, T. (2016). An introduction to Differential Linear Logic: proof-nets, models and antiderivatives. ArXiv:1606.01642 [Cs]. Retrieved from http://arxiv.org/abs/1606.01642
-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
-
Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc
-
Keimel, K., & Plotkin, G. D. (2017). Mixed powerdomains for probability and nondeterminism. ArXiv:1612.01005 [Cs]. https://doi.org/10/ggdmrp
-
Heunen, C., Kammar, O., Staton, S., & Yang, H. (2017). A Convenient Category for Higher-Order Probability Theory. ArXiv:1701.02547 [Cs, Math]. Retrieved from http://arxiv.org/abs/1701.02547
-
Borgström, J., Lago, U. D., Gordon, A. D., & Szymczak, M. (2017). A Lambda-Calculus Foundation for Universal Probabilistic Programming. ArXiv:1512.08990 [Cs]. Retrieved from http://arxiv.org/abs/1512.08990
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (3)
CATEGORICAL LOGIC
- Effectus theory (1)
- Linear logic (7)
DIFFERENTIAL CALCULUS
- Differentiation (7)
MACHINE LEARNING
- Machine Learning (4)
MODEL CHECKING AND STATE MACHINES
- Coalgebras (2)
- Rewriting theory (3)
- Symbolic logic (3)
- Transition systems (6)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Implementation (7)
Topic
- Abstract machines (2)
- Algebra (1)
- Automatic differentiation (3)
- Bayesian inference (6)
- Bayesianism (3)
- Biology (3)
- Categorical ML (1)
- Categorical probability theory (3)
- Classical ML (1)
- Coalgebras (2)
- Coherence spaces (2)
- Denotational semantics (12)
- Differential Linear Logic (3)
- Differentiation (7)
- Effectus theory (1)
- Game semantics (1)
- Implementation (7)
- Interactive semantics (2)
- Linear logic (6)
- Machine learning (3)
- Powerdomains (3)
- Probabilistic programming (15)
- Probabilistic transition systems (2)
- Programming language theory (19)
- Rewriting theory (3)
- Semantics (5)
- Symbolic logic (3)
- Systems biology (3)
- Transition systems (2)