Your search
PROGRAMMING LANGUAGES
Methodology
Resource type
Publication year
Results
7 resources-
Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., & Carbin, M. (2019). Reactive Probabilistic Programming. ArXiv:1908.07563 [Cs]. Retrieved from http://arxiv.org/abs/1908.07563
-
Law, J., & Wilkinson, D. (2019). Functional probabilistic programming for scalable Bayesian modelling. ArXiv:1908.02062 [Stat]. Retrieved from http://arxiv.org/abs/1908.02062
-
Ścibior, A., Kammar, O., & Ghahramani, Z. (2018). Functional programming for modular Bayesian inference. Proceedings of the ACM on Programming Languages, 2(ICFP), 1–29. https://doi.org/10/gft39x
-
Boutillier, P., Maasha, M., Li, X., Medina-Abarca, H. F., Krivine, J., Feret, J., … Fontana, W. (2018). The Kappa platform for rule-based modeling. Bioinformatics, 34(13), i583–i592. https://doi.org/10/gdrhw6
-
Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017). Deep Probabilistic Programming. ArXiv:1701.03757 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1701.03757
-
Hur, C.-K., Nori, A. V., & Rajamani, S. K. (2015). A Provably Correct Sampler for Probabilistic Programs, 21.
-
Fages, F., Calzone, L., & Soliman, S. (2006). BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics, 22(14), 1805–1807. https://doi.org/10/dfv
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (2)
DIFFERENTIAL CALCULUS
- Differentiation (1)
MACHINE LEARNING
- Machine Learning (1)
MODEL CHECKING AND STATE MACHINES
- Rewriting theory (2)
- Symbolic logic (1)
- Transition systems (2)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
Topic
- Abstract machines (1)
- Automatic differentiation (1)
- Bayesian inference (5)
- Biology (2)
- Denotational semantics (1)
- Differentiation (1)
- Implementation (7)
- Machine learning (1)
- Probabilistic programming (5)
- Programming language theory (3)
- Rewriting theory (2)
- Symbolic logic (1)
- Systems biology (2)