Your search
MACHINE LEARNING
Resource type
Publication year
Results
27 resources-
Paul, A., & Venkatasubramanian, S. (2015). Why does Deep Learning work? - A perspective from Group Theory. ArXiv:1412.6621 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1412.6621
-
McCullagh, P. (2002). What is a statistical model? The Annals of Statistics, 30(5), 1225–1310. https://doi.org/10/bkts3m
-
Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep learning requires rethinking generalization. ArXiv:1611.03530 [Cs]. Retrieved from http://arxiv.org/abs/1611.03530
-
Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., … Song, D. (2018). Robust Physical-World Attacks on Deep Learning Models. ArXiv:1707.08945 [Cs]. Retrieved from http://arxiv.org/abs/1707.08945
-
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., … Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. ArXiv:1806.01261 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1806.01261
-
Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10/gdxwhq
-
Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing Machines. ArXiv:1410.5401 [Cs]. Retrieved from http://arxiv.org/abs/1410.5401
-
Jacobs, B., & Sprunger, D. (2018). Neural Nets via Forward State Transformation and Backward Loss Transformation. ArXiv:1803.09356 [Cs]. Retrieved from http://arxiv.org/abs/1803.09356
-
Dong, H., Mao, J., Lin, T., Wang, C., Li, L., & Zhou, D. (2019). Neural Logic Machines. ArXiv:1904.11694 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1904.11694
-
Serafini, L., & Garcez, A. d’Avila. (2016). Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. ArXiv:1606.04422 [Cs]. Retrieved from http://arxiv.org/abs/1606.04422
-
Murfet, D., Clift, J., Doryn, D., & Wallbridge, J. (2019). Logic and the $2$-Simplicial Transformer. ArXiv:1909.00668 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1909.00668
-
Philipona, D., O’Regan, J., & Nadal, J.-P. (2003). Is There Something Out There? Inferring Space from Sensorimotor Dependencies. Neural Computation, 15, 2029–2049. https://doi.org/10/frg7gs
-
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. (2014). Generative Adversarial Networks. ArXiv:1406.2661 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1406.2661
-
Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and Harnessing Adversarial Examples. ArXiv:1412.6572 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1412.6572
-
Murfet, D., & Clift, J. (2019). Derivatives of Turing machines in Linear Logic. ArXiv:1805.11813 [Math]. Retrieved from http://arxiv.org/abs/1805.11813
-
Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017). Deep Probabilistic Programming. ArXiv:1701.03757 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1701.03757
-
Harris, K. D. (2019). Characterizing the invariances of learning algorithms using category theory. ArXiv:1905.02072 [Cs, Math, Stat]. Retrieved from http://arxiv.org/abs/1905.02072
-
Jacobs, B. (2018). Categorical Aspects of Parameter Learning. ArXiv:1810.05814 [Cs]. Retrieved from http://arxiv.org/abs/1810.05814
-
Culbertson, J., & Sturtz, K. (2013). Bayesian machine learning via category theory. ArXiv:1312.1445 [Math]. Retrieved from http://arxiv.org/abs/1312.1445
-
Fong, B., Spivak, D. I., & Tuyéras, R. (2019). Backprop as Functor: A compositional perspective on supervised learning. ArXiv:1711.10455 [Cs, Math]. Retrieved from http://arxiv.org/abs/1711.10455
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (1)
- Neuroscience (2)
CATEGORICAL LOGIC
- Effectus theory (2)
- Linear logic (1)
DIFFERENTIAL CALCULUS
- Differentiation (2)
MACHINE LEARNING
-
Machine Learning
- Adversarial attacks (5)
- Algebraic ML (3)
- Categorical ML (8)
- Classic ML (13)
MODEL CHECKING AND STATE MACHINES
- Symbolic logic (2)
- Transition systems (5)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Compendium (1)
- Implementation (2)
- Sketchy (2)
Topic
- Abstract machines (5)
- Adversarial attacks (5)
- Algebra (2)
- Automatic differentiation (1)
- Bayesian inference (2)
- Bayesianism (4)
- Categorical ML (7)
- Categorical probability theory (4)
- Classical ML (11)
- Compendium (1)
- Differentiation (2)
- Effectus theory (2)
- Implementation (2)
- Linear logic (1)
- Machine learning (19)
- Neuroscience (1)
- Probabilistic programming (2)
- Programming language theory (1)
- Purely theoretical (3)
- Semantics (2)
- Statistical learning theory (1)
- Symbolic logic (2)