Your search
PROBABILITY & STATISTICS
Resource type
Results
20 resources-
Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., & Carbin, M. (2019). Reactive Probabilistic Programming. ArXiv:1908.07563 [Cs]. Retrieved from http://arxiv.org/abs/1908.07563
-
Law, J., & Wilkinson, D. (2019). Functional probabilistic programming for scalable Bayesian modelling. ArXiv:1908.02062 [Stat]. Retrieved from http://arxiv.org/abs/1908.02062
-
Jacobs, B., Kissinger, A., & Zanasi, F. (2019). Causal Inference by String Diagram Surgery. ArXiv:1811.08338 [Cs, Math]. Retrieved from http://arxiv.org/abs/1811.08338
-
Jacobs, B., & Cho, K. (2019). Disintegration and Bayesian Inversion via String Diagrams. Mathematical Structures in Computer Science, 29(7), 938–971. https://doi.org/10/ggdf9v
-
Vákár, M., Kammar, O., & Staton, S. (2018). A Domain Theory for Statistical Probabilistic Programming. ArXiv:1811.04196 [Cs]. Retrieved from http://arxiv.org/abs/1811.04196
-
Jacobs, B. (2018). Categorical Aspects of Parameter Learning. ArXiv:1810.05814 [Cs]. Retrieved from http://arxiv.org/abs/1810.05814
-
Ścibior, A., Kammar, O., & Ghahramani, Z. (2018). Functional programming for modular Bayesian inference. Proceedings of the ACM on Programming Languages, 2(ICFP), 1–29. https://doi.org/10/gft39x
-
Jacobs, B., & Zanasi, F. (2018). The Logical Essentials of Bayesian Reasoning. ArXiv:1804.01193 [Cs]. Retrieved from http://arxiv.org/abs/1804.01193
-
Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., … Ghahramani, Z. (2017). Denotational validation of higher-order Bayesian inference. Proceedings of the ACM on Programming Languages, 2(POPL), 1–29. https://doi.org/10.1145/3158148
-
Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017). Deep Probabilistic Programming. ArXiv:1701.03757 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1701.03757
-
Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc
-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
-
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, 525–534. https://doi.org/10/ggdf97
-
Jacobs, B., & Adams, R. (2015). A Type Theory for Probabilistic and Bayesian Reasoning. ArXiv:1511.09230 [Cs, Math]. Retrieved from http://arxiv.org/abs/1511.09230
-
Hur, C.-K., Nori, A. V., & Rajamani, S. K. (2015). A Provably Correct Sampler for Probabilistic Programs, 21.
-
Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10/gdxwhq
-
Culbertson, J., & Sturtz, K. (2013). Bayesian machine learning via category theory. ArXiv:1312.1445 [Math]. Retrieved from http://arxiv.org/abs/1312.1445
-
Fong, B. (2013). Causal Theories: A Categorical Perspective on Bayesian Networks. ArXiv:1301.6201 [Math]. Retrieved from http://arxiv.org/abs/1301.6201
-
McCullagh, P. (2002). What is a statistical model? The Annals of Statistics, 30(5), 1225–1310. https://doi.org/10/bkts3m
-
Heckerman, D. (1995). A Tutorial on Learning With Bayesian Networks. Retrieved from https://www.microsoft.com/en-us/research/publication/a-tutorial-on-learning-with-bayesian-networks/
Explore
CATEGORICAL LOGIC
- Effectus theory (2)
DIFFERENTIAL CALCULUS
- Differentiation (1)
MACHINE LEARNING
- Machine Learning (7)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
- Programming language theory (11)
- Type theory (1)
Methodology
- Compendium (1)
- Implementation (7)
Topic
- Automatic differentiation (1)
- Bayesian inference (6)
- Bayesianism (11)
- Categorical ML (4)
- Categorical probability theory (8)
- Classical ML (2)
- Compendium (1)
- Denotational semantics (1)
- Differentiation (1)
- Effectus theory (2)
- Implementation (6)
- Machine learning (4)
- Probabilistic programming (7)
- Programming language theory (6)
- Purely theoretical (2)
- Semantics (3)
- Statistical learning theory (1)
- Type theory (1)