Your search
Resource type
Results
25 resources-
Andreatta, M., Ehresmann, A., Guitart, R., & Mazzola, G. (2013). Towards a Categorical Theory of Creativity for Music, Discourse, and Cognition. In J. Yust, J. Wild, & J. A. Burgoyne (Eds.), Mathematics and Computation in Music (pp. 19–37). Berlin, Heidelberg: Springer. https://doi.org/10/ggdndz
-
Dal Lago, U., & Hoshino, N. (2019). The Geometry of Bayesian Programming (pp. 1–13). https://doi.org/10/ggdk85
-
Castellan, S., Clairambault, P., Paquet, H., & Winskel, G. (2018). The concurrent game semantics of Probabilistic PCF. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’18 (pp. 215–224). Oxford, United Kingdom: ACM Press. https://doi.org/10/ggdjfz
-
Ehrhard, T., Pagani, M., & Tasson, C. (2011). The Computational Meaning of Probabilistic Coherence Spaces. In 2011 IEEE 26th Annual Symposium on Logic in Computer Science (pp. 87–96). Toronto, ON, Canada: IEEE. https://doi.org/10/cpv52n
-
Mascari, J.-F., Giacchero, D., & Sfakianakis, N. (2017). Symetries and asymetries of the immune system response: A categorification approach. In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1451–1454). https://doi.org/10/ggdnd3
-
Danos, V., Feret, J., Fontana, W., Harmer, R., & Krivine, J. (2008). Rule-Based Modelling, Symmetries, Refinements. In J. Fisher (Ed.), Formal Methods in Systems Biology (pp. 103–122). Berlin, Heidelberg: Springer. https://doi.org/10/dc5k68
-
Danos, V., & Harmer, R. (2000). Probabilistic game semantics (Vol. 3, pp. 204–213). Presented at the ACM Transactions on Computational Logic - TOCL. https://doi.org/10/b6k43s
-
Ehrhard, T., Tasson, C., & Pagani, M. (2014). Probabilistic coherence spaces are fully abstract for probabilistic PCF. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’14 (pp. 309–320). San Diego, California, USA: ACM Press. https://doi.org/10/ggdf9x
-
Ścibior, A., Ghahramani, Z., & Gordon, A. D. (2015). Practical Probabilistic Programming with Monads. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell (pp. 165–176). New York, NY, USA: ACM. https://doi.org/10/gft39z
-
Baez, J. C., & Otter, N. (2015). Operads and Phylogenetic Trees.
-
Girard, J.-Y. (1995). On Geometry of Interaction. In H. Schwichtenberg (Ed.), Proof and Computation (pp. 145–191). Berlin, Heidelberg: Springer. https://doi.org/10/fr557p
-
Healy, M. J., & Caudell, T. P. (2004). Neural Networks, Knowledge and Cognition: A Mathematical Semantic Model Based upon Category Theory.
-
Gómez, J. (2009). Modeling cognitive systems with Category Theory Towards rigor in cognitive sciences.
-
Fages, F., Calzone, L., Chabrier-Rivier, N., & Soliman, S. (2006). Machine Learning Biochemical Networks from Temporal Logic Properties. In C. Priami & G. Plotkin (Eds.), Transactions on Computational Systems Biology VI (pp. 68–94). Berlin, Heidelberg: Springer. https://doi.org/10/dd8
-
Kerjean, M., & Pacaud Lemay, J.-S. (2019). Higher-Order Distributions for Differential Linear Logic. In M. Bojańczyk & A. Simpson (Eds.), Foundations of Software Science and Computation Structures (pp. 330–347). Cham: Springer International Publishing. https://doi.org/10/ggdmrj
-
Fiore, M. P. (2007). Differential Structure in Models of Multiplicative Biadditive Intuitionistic Linear Logic. In S. R. Della Rocca (Ed.), Typed Lambda Calculi and Applications (pp. 163–177). Berlin, Heidelberg: Springer. https://doi.org/10/c8vgx8
-
Sprunger, D., & Katsumata, S. (2019). Differentiable Causal Computations via Delayed Trace. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (pp. 1–12). Vancouver, BC, Canada: IEEE. https://doi.org/10/ggdf98
-
Fages, F. (2014). Cells as Machines: Towards Deciphering Biochemical Programs in the Cell. In R. Natarajan (Ed.), Distributed Computing and Internet Technology (pp. 50–67). Cham: Springer International Publishing. https://doi.org/10/ggdf96
-
Healy, M. J. (2000). Category theory applied to neural modeling and graphical representations. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (pp. 35–40 vol.3). Como, Italy: IEEE. https://doi.org/10/dr29pc
-
Kato, G. C., & Struppa, D. C. (2002). Category Theory and Consciousness. https://doi.org/10/ggdf92
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (10)
- Neuroscience (5)
- Psychology (1)
CATEGORICAL LOGIC
- Linear logic (6)
DIFFERENTIAL CALCULUS
- Differentiation (3)
MACHINE LEARNING
- Machine Learning (4)
MODEL CHECKING AND STATE MACHINES
- Coalgebras (2)
- Rewriting theory (3)
- Symbolic logic (2)
- Transition systems (4)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
- Programming language theory (10)
- Type theory (1)
Methodology
- Implementation (1)
- Sketchy (6)
Topic
- Abstract machines (1)
- Algebra (1)
- Bayesian inference (2)
- Biology (6)
- Categorical ML (2)
- Categorical probability theory (2)
- Classical ML (1)
- Coalgebras (2)
- Coherence spaces (2)
- Denotational semantics (7)
- Differential Linear Logic (2)
- Differentiation (3)
- Emergence (4)
- Game semantics (2)
- Implementation (1)
- Interactive semantics (3)
- Linear logic (4)
- Machine learning (2)
- Neuroscience (3)
- Powerdomains (1)
- Probabilistic programming (7)
- Probabilistic transition systems (1)
- Programming language theory (7)
- Psychology (1)
- Rewriting theory (3)
- Semantics (1)
- Sketchy (4)
- Symbolic logic (2)
- Systems biology (3)
- Transition systems (2)