Your search
Topic
Publication year
Results
10 resources-
Ehrhard, T., & Danos, V. (2011). Probabilistic coherence spaces as a model of higher-order probabilistic computation. Information and Computation, 209(6), 966–991. https://doi.org/10/ctfch6
-
Ehrhard, T., Tasson, C., & Pagani, M. (2014). Probabilistic coherence spaces are fully abstract for probabilistic PCF. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’14 (pp. 309–320). San Diego, California, USA: ACM Press. https://doi.org/10/ggdf9x
-
Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc
-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
-
Murfet, D. (2019). dmurfet/2simplicialtransformer. Retrieved from https://github.com/dmurfet/2simplicialtransformer (Original work published 2019)
-
Murfet, D. (2018). dmurfet/deeplinearlogic. Retrieved from https://github.com/dmurfet/deeplinearlogic (Original work published 2016)
-
Murfet, D. (2018). dmurfet/polysemantics. Retrieved from https://github.com/dmurfet/polysemantics (Original work published 2016)
-
Murfet, D., Clift, J., Doryn, D., & Wallbridge, J. (2019). Logic and the $2$-Simplicial Transformer. ArXiv:1909.00668 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1909.00668
-
Staton, S. (2017). Commutative Semantics for Probabilistic Programming. In H. Yang (Ed.), Programming Languages and Systems (Vol. 10201, pp. 855–879). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54434-1_32
-
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, 525–534. https://doi.org/10/ggdf97
Explore
CATEGORICAL LOGIC
- Effectus theory (1)
- Linear logic (4)
MACHINE LEARNING
- Machine Learning (5)
MODEL CHECKING AND STATE MACHINES
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Implementation (3)
Topic
- Abstract machines (2)
- Algebra (2)
- Bayesianism (4)
- Categorical ML (3)
- Categorical probability theory (2)
- Coherence spaces (2)
- Effectus theory (1)
- Implementation (3)
- Linear logic (2)
- Machine learning (4)
- Probabilistic programming (4)
- Programming language theory (6)
- Semantics
Resource type
- Book Section (1)
- Computer Program (3)
- Conference Paper (1)
- Journal Article (5)
Publication year
Online resource
- yes (10)