Your search
Online resource
Results
26 resources-
Plotkin, G. D. (1977). LCF considered as a programming language. Theoretical Computer Science, 5(3), 223–255. https://doi.org/10/dc7fdn
-
Jones, C., & Plotkin, G. (1989). A Probabilistic Powerdomain of Evaluations. In Proceedings of the Fourth Annual Symposium on Logic in Computer Science (pp. 186–195). Piscataway, NJ, USA: IEEE Press. Retrieved from http://dl.acm.org/citation.cfm?id=77350.77370
-
Engeler, E. (1995). The Combinatory Programme. Birkhäuser Basel. https://doi.org/10.1007/978-1-4612-4268-0
-
Ehrhard, T., & Regnier, L. (2003). The differential lambda-calculus. Theoretical Computer Science, 309(1), 1–41. https://doi.org/10/bf3b8v
-
Varacca, D., & Winskel, G. (2006). Distributing probability over non-determinism. Mathematical Structures in Computer Science, 16(01), 87. https://doi.org/10/czs9sx
-
Tix, R., Keimel, K., & Plotkin, G. (2009). Semantic Domains for Combining Probability and Non-Determinism. Electronic Notes in Theoretical Computer Science, 222, 3–99. https://doi.org/10/d9hwq7
-
Keimel, K., & Plotkin, G. d. (2009). Predicate Transformers for Extended Probability and Non-determinism. Mathematical. Structures in Comp. Sci., 19(3), 501–539. https://doi.org/10/bkvgqc
-
Ehrhard, T., Pagani, M., & Tasson, C. (2011). The Computational Meaning of Probabilistic Coherence Spaces. In 2011 IEEE 26th Annual Symposium on Logic in Computer Science (pp. 87–96). Toronto, ON, Canada: IEEE. https://doi.org/10/cpv52n
-
Ehrhard, T., & Danos, V. (2011). Probabilistic coherence spaces as a model of higher-order probabilistic computation. Information and Computation, 209(6), 966–991. https://doi.org/10/ctfch6
-
Manzyuk, O. (2012). A Simply Typed λ-Calculus of Forward Automatic Differentiation. Electronic Notes in Theoretical Computer Science, 286, 257–272. https://doi.org/10/ggdm57
-
Ehrhard, T., Tasson, C., & Pagani, M. (2014). Probabilistic coherence spaces are fully abstract for probabilistic PCF. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’14 (pp. 309–320). San Diego, California, USA: ACM Press. https://doi.org/10/ggdf9x
-
Ścibior, A., Ghahramani, Z., & Gordon, A. D. (2015). Practical Probabilistic Programming with Monads. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell (pp. 165–176). New York, NY, USA: ACM. https://doi.org/10/gft39z
-
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, 525–534. https://doi.org/10/ggdf97
-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
-
Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc
-
Keimel, K., & Plotkin, G. D. (2017). Mixed powerdomains for probability and nondeterminism. ArXiv:1612.01005 [Cs]. https://doi.org/10/ggdmrp
-
Staton, S. (2017). Commutative Semantics for Probabilistic Programming. In H. Yang (Ed.), Programming Languages and Systems (Vol. 10201, pp. 855–879). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54434-1_32
-
Borgström, J., Lago, U. D., Gordon, A. D., & Szymczak, M. (2017). A Lambda-Calculus Foundation for Universal Probabilistic Programming. ArXiv:1512.08990 [Cs]. Retrieved from http://arxiv.org/abs/1512.08990
-
Ehrhard, T., Pagani, M., & Tasson, C. (2017). Measurable Cones and Stable, Measurable Functions. Proceedings of the ACM on Programming Languages, 2(POPL), 1–28. https://doi.org/10/ggdjf8
-
Castellan, S., Clairambault, P., Paquet, H., & Winskel, G. (2018). The concurrent game semantics of Probabilistic PCF. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’18 (pp. 215–224). Oxford, United Kingdom: ACM Press. https://doi.org/10/ggdjfz
Explore
CATEGORICAL LOGIC
- Effectus theory (1)
- Linear logic (6)
DIFFERENTIAL CALCULUS
- Differentiation (5)
MACHINE LEARNING
- Machine Learning (2)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Implementation (3)
Topic
- Algebra (1)
- Automatic differentiation (3)
- Bayesian inference (3)
- Bayesianism (4)
- Categorical ML (1)
- Categorical probability theory (3)
- Coherence spaces (4)
- Denotational semantics (11)
- Differential Linear Logic (1)
- Differentiation (5)
- Effectus theory (1)
- Game semantics (2)
- Implementation (3)
- Interactive semantics (2)
- Linear logic (3)
- Powerdomains (4)
- Probabilistic programming (18)
- Programming language theory
- Purely theoretical (1)
- Semantics (6)
Resource type
- Book (1)
- Book Section (1)
- Conference Paper (5)
- Journal Article (19)