Your search
PROGRAMMING LANGUAGES
Results
23 resources-
Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., & Carbin, M. (2019). Reactive Probabilistic Programming. ArXiv:1908.07563 [Cs]. Retrieved from http://arxiv.org/abs/1908.07563
-
Law, J., & Wilkinson, D. (2019). Functional probabilistic programming for scalable Bayesian modelling. ArXiv:1908.02062 [Stat]. Retrieved from http://arxiv.org/abs/1908.02062
-
Dal Lago, U., & Hoshino, N. (2019). The Geometry of Bayesian Programming (pp. 1–13). https://doi.org/10/ggdk85
-
Ehrhard, T. (2019). Differentials and distances in probabilistic coherence spaces. ArXiv:1902.04836 [Cs]. Retrieved from http://arxiv.org/abs/1902.04836
-
Wilkinson, D. (2019). A compositional approach to scalable Bayesian computation and probabilistic programming.
-
Paquet, H., & Winskel, G. (2018). Continuous Probability Distributions in Concurrent Games. Electronic Notes in Theoretical Computer Science, 341, 321–344. https://doi.org/10/ggdmwv
-
Ehrhard, T., & Tasson, C. (2018). Probabilistic call by push value. ArXiv:1607.04690 [Cs]. https://doi.org/10/ggdk8z
-
Castellan, S., Clairambault, P., Paquet, H., & Winskel, G. (2018). The concurrent game semantics of Probabilistic PCF. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’18 (pp. 215–224). Oxford, United Kingdom: ACM Press. https://doi.org/10/ggdjfz
-
Ehrhard, T., Pagani, M., & Tasson, C. (2017). Measurable Cones and Stable, Measurable Functions. Proceedings of the ACM on Programming Languages, 2(POPL), 1–28. https://doi.org/10/ggdjf8
-
Borgström, J., Lago, U. D., Gordon, A. D., & Szymczak, M. (2017). A Lambda-Calculus Foundation for Universal Probabilistic Programming. ArXiv:1512.08990 [Cs]. Retrieved from http://arxiv.org/abs/1512.08990
-
Staton, S. (2017). Commutative Semantics for Probabilistic Programming. In H. Yang (Ed.), Programming Languages and Systems (Vol. 10201, pp. 855–879). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54434-1_32
-
Keimel, K., & Plotkin, G. D. (2017). Mixed powerdomains for probability and nondeterminism. ArXiv:1612.01005 [Cs]. https://doi.org/10/ggdmrp
-
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, 525–534. https://doi.org/10/ggdf97
-
Ścibior, A., Ghahramani, Z., & Gordon, A. D. (2015). Practical Probabilistic Programming with Monads. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell (pp. 165–176). New York, NY, USA: ACM. https://doi.org/10/gft39z
-
Hur, C.-K., Nori, A. V., & Rajamani, S. K. (2015). A Provably Correct Sampler for Probabilistic Programs, 21.
-
Ehrhard, T., Tasson, C., & Pagani, M. (2014). Probabilistic coherence spaces are fully abstract for probabilistic PCF. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’14 (pp. 309–320). San Diego, California, USA: ACM Press. https://doi.org/10/ggdf9x
-
Ehrhard, T., & Danos, V. (2011). Probabilistic coherence spaces as a model of higher-order probabilistic computation. Information and Computation, 209(6), 966–991. https://doi.org/10/ctfch6
-
Ehrhard, T., Pagani, M., & Tasson, C. (2011). The Computational Meaning of Probabilistic Coherence Spaces. In 2011 IEEE 26th Annual Symposium on Logic in Computer Science (pp. 87–96). Toronto, ON, Canada: IEEE. https://doi.org/10/cpv52n
-
Tix, R., Keimel, K., & Plotkin, G. (2009). Semantic Domains for Combining Probability and Non-Determinism. Electronic Notes in Theoretical Computer Science, 222, 3–99. https://doi.org/10/d9hwq7
-
Danos, V., & Harmer, R. (2000). Probabilistic game semantics (Vol. 3, pp. 204–213). Presented at the ACM Transactions on Computational Logic - TOCL. https://doi.org/10/b6k43s
Explore
CATEGORICAL LOGIC
- Linear logic (6)
DIFFERENTIAL CALCULUS
- Differentiation (2)
MODEL CHECKING AND STATE MACHINES
- Rewriting theory (1)
- Transition systems (1)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Implementation (5)
Topic
- Automatic differentiation (1)
- Bayesian inference (6)
- Bayesianism (2)
- Coherence spaces (4)
- Denotational semantics (12)
- Differential Linear Logic (1)
- Differentiation (2)
- Game semantics (3)
- Implementation (5)
- Interactive semantics (3)
- Linear logic (3)
- Powerdomains (3)
- Probabilistic programming
- Programming language theory
- Rewriting theory (1)
- Semantics (4)
- Transition systems (1)
Resource type
- Book Section (1)
- Conference Paper (7)
- Journal Article (14)
- Presentation (1)