Your search
CATEGORICAL LOGIC
Topic
Results
18 resources-
Abramsky, S., Haghverdi, E., & Scott, P. (2002). Geometry of Interaction and Linear Combinatory Algebras. Mathematical. Structures in Comp. Sci., 12(5), 625–665. https://doi.org/10/fcsmhm
-
Blute, R. F., Cockett, J. R. B., Lemay, J.-S. P., & Seely, R. A. G. (2019). Differential Categories Revisited. Applied Categorical Structures. https://doi.org/10/ggdm44
-
Blute, R., Ehrhard, T., & Tasson, C. (2010). A convenient differential category. ArXiv:1006.3140 [Cs, Math]. Retrieved from http://arxiv.org/abs/1006.3140
-
Dal Lago, U., & Hoshino, N. (2019). The Geometry of Bayesian Programming (pp. 1–13). https://doi.org/10/ggdk85
-
Ehrhard, T., & Regnier, L. (2006). Differential interaction nets. Theoretical Computer Science, 364(2), 166–195. https://doi.org/10/bg5g4b
-
Ehrhard, T. (2016). An introduction to Differential Linear Logic: proof-nets, models and antiderivatives. ArXiv:1606.01642 [Cs]. Retrieved from http://arxiv.org/abs/1606.01642
-
Ehrhard, T. (2019). Differentials and distances in probabilistic coherence spaces. ArXiv:1902.04836 [Cs]. Retrieved from http://arxiv.org/abs/1902.04836
-
Ehrhard, T., & Regnier, L. (2003). The differential lambda-calculus. Theoretical Computer Science, 309(1), 1–41. https://doi.org/10/bf3b8v
-
Ehrhard, T., & Tasson, C. (2018). Probabilistic call by push value. ArXiv:1607.04690 [Cs]. https://doi.org/10/ggdk8z
-
Fiore, M., Gambino, N., Hyland, M., & Winskel, G. (2008). The cartesian closed bicategory of generalised species of structures. Journal of the London Mathematical Society, 77(1), 203–220. https://doi.org/10/bd2mr9
-
Fiore, M. P. (2007). Differential Structure in Models of Multiplicative Biadditive Intuitionistic Linear Logic. In S. R. Della Rocca (Ed.), Typed Lambda Calculi and Applications (pp. 163–177). Berlin, Heidelberg: Springer. https://doi.org/10/c8vgx8
-
Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50(1), 1–101. https://doi.org/10/cmv5mj
-
Girard, J.-Y. (1995). On Geometry of Interaction. In H. Schwichtenberg (Ed.), Proof and Computation (pp. 145–191). Berlin, Heidelberg: Springer. https://doi.org/10/fr557p
-
Kerjean, M., & Pacaud Lemay, J.-S. (2019). Higher-Order Distributions for Differential Linear Logic. In M. Bojańczyk & A. Simpson (Eds.), Foundations of Software Science and Computation Structures (pp. 330–347). Cham: Springer International Publishing. https://doi.org/10/ggdmrj
-
Murfet, D. (2018). dmurfet/deeplinearlogic. Retrieved from https://github.com/dmurfet/deeplinearlogic (Original work published 2016)
-
Murfet, D. (2018). dmurfet/polysemantics. Retrieved from https://github.com/dmurfet/polysemantics (Original work published 2016)
-
Murfet, D., & Clift, J. (2019). Derivatives of Turing machines in Linear Logic. ArXiv:1805.11813 [Math]. Retrieved from http://arxiv.org/abs/1805.11813
-
Murfet, D., & Hu, H. (n.d.). Linear logic and deep learning.
Explore
CATEGORICAL LOGIC
DIFFERENTIAL CALCULUS
- Differentiation (10)
MACHINE LEARNING
- Machine Learning (4)
MODEL CHECKING AND STATE MACHINES
- Rewriting theory (1)
- Transition systems (2)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
- Programming language theory (13)
- Type theory (3)
Methodology
- Implementation (2)
Topic
- Abstract machines (1)
- Bayesian inference (1)
- Categorical ML (4)
- Coherence spaces (1)
- Denotational semantics (7)
- Differential Linear Logic (8)
- Differentiation (10)
- Implementation (2)
- Interactive semantics (2)
- Linear logic
- Machine learning (4)
- Probabilistic programming (3)
- Programming language theory (4)
- Rewriting theory (1)
- Semantics (3)
- Transition systems (1)
- Type theory (1)
Resource type
- Computer Program (2)
- Conference Paper (4)
- Journal Article (11)
- Presentation (1)
Publication year
- Between 1900 and 1999 (2)
- Between 2000 and 2022 (15)
- Unknown (1)