Your search
Topic
Resource type
Results
11 resources-
Boutillier, P., Feret, J., Krivine, J., & Fontana, W. (n.d.). The Kappa Language and Kappa Tools, 52.
-
Fages, F., Calzone, L., & Soliman, S. (2006). BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics, 22(14), 1805–1807. https://doi.org/10/dfv
-
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. (2014). Generative Adversarial Networks. ArXiv:1406.2661 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1406.2661
-
Hur, C.-K., Nori, A. V., & Rajamani, S. K. (2015). A Provably Correct Sampler for Probabilistic Programs, 21.
-
Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017). Deep Probabilistic Programming. ArXiv:1701.03757 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1701.03757
-
Boutillier, P., Maasha, M., Li, X., Medina-Abarca, H. F., Krivine, J., Feret, J., … Fontana, W. (2018). The Kappa platform for rule-based modeling. Bioinformatics, 34(13), i583–i592. https://doi.org/10/gdrhw6
-
Ścibior, A., Kammar, O., & Ghahramani, Z. (2018). Functional programming for modular Bayesian inference. Proceedings of the ACM on Programming Languages, 2(ICFP), 1–29. https://doi.org/10/gft39x
-
Elliott, C. (2018). The simple essence of automatic differentiation. ArXiv:1804.00746 [Cs]. Retrieved from http://arxiv.org/abs/1804.00746
-
Jacobs, B., Kissinger, A., & Zanasi, F. (2019). Causal Inference by String Diagram Surgery. ArXiv:1811.08338 [Cs, Math]. Retrieved from http://arxiv.org/abs/1811.08338
-
Law, J., & Wilkinson, D. (2019). Functional probabilistic programming for scalable Bayesian modelling. ArXiv:1908.02062 [Stat]. Retrieved from http://arxiv.org/abs/1908.02062
-
Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., & Carbin, M. (2019). Reactive Probabilistic Programming. ArXiv:1908.07563 [Cs]. Retrieved from http://arxiv.org/abs/1908.07563
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (3)
DIFFERENTIAL CALCULUS
- Differentiation (2)
MACHINE LEARNING
- Machine Learning (2)
MODEL CHECKING AND STATE MACHINES
- Rewriting theory (2)
- Symbolic logic (1)
- Transition systems (3)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Implementation (11)
Topic
- Abstract machines (1)
- Adversarial attacks (1)
- Automatic differentiation (2)
- Bayesian inference (5)
- Bayesianism (1)
- Biology (3)
- Categorical probability theory (1)
- Classical ML (1)
- Denotational semantics (1)
- Differentiation (2)
- Implementation
- Machine learning (2)
- Probabilistic programming (5)
- Programming language theory (3)
- Rewriting theory (2)
- Symbolic logic (1)
- Systems biology (3)
Resource type
Publication year
- Between 2000 and 2022 (10)
- Unknown (1)