Your search
Topic
Results
12 resources-
McCullagh, P. (2002). What is a statistical model? The Annals of Statistics, 30(5), 1225–1310. https://doi.org/10/bkts3m
-
Jacobs, B., & Sprunger, D. (2018). Neural Nets via Forward State Transformation and Backward Loss Transformation. ArXiv:1803.09356 [Cs]. Retrieved from http://arxiv.org/abs/1803.09356
-
Murfet, D., & Hu, H. (n.d.). Linear logic and deep learning.
-
Murfet, D. (2018). dmurfet/polysemantics. Retrieved from https://github.com/dmurfet/polysemantics (Original work published 2016)
-
Murfet, D. (2018). dmurfet/deeplinearlogic. Retrieved from https://github.com/dmurfet/deeplinearlogic (Original work published 2016)
-
Sprunger, D., & Katsumata, S. (2019). Differentiable Causal Computations via Delayed Trace. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (pp. 1–12). Vancouver, BC, Canada: IEEE. https://doi.org/10/ggdf98
-
Murfet, D., & Clift, J. (2019). Derivatives of Turing machines in Linear Logic. ArXiv:1805.11813 [Math]. Retrieved from http://arxiv.org/abs/1805.11813
-
Jacobs, B. (2018). Categorical Aspects of Parameter Learning. ArXiv:1810.05814 [Cs]. Retrieved from http://arxiv.org/abs/1810.05814
-
Culbertson, J., & Sturtz, K. (2013). Bayesian machine learning via category theory. ArXiv:1312.1445 [Math]. Retrieved from http://arxiv.org/abs/1312.1445
-
Fong, B., Spivak, D. I., & Tuyéras, R. (2019). Backprop as Functor: A compositional perspective on supervised learning. ArXiv:1711.10455 [Cs, Math]. Retrieved from http://arxiv.org/abs/1711.10455
-
Izbicki, M. (2013). Algebraic classifiers: a generic approach to fast cross-validation, online training, and parallel training. In ICML.
-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
Explore
CATEGORICAL LOGIC
- Effectus theory (2)
- Linear logic (4)
DIFFERENTIAL CALCULUS
- Differentiation (2)
MACHINE LEARNING
- Machine Learning (12)
MODEL CHECKING AND STATE MACHINES
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Compendium (1)
- Implementation (2)
Topic
- Abstract machines (1)
- Algebra (1)
- Bayesianism (4)
- Categorical ML
- Categorical probability theory (4)
- Compendium (1)
- Differentiation (2)
- Effectus theory (2)
- Implementation (2)
- Linear logic (4)
- Machine learning (8)
- Programming language theory (1)
- Purely theoretical (3)
- Semantics (4)
- Statistical learning theory (1)
Resource type
- Computer Program (2)
- Conference Paper (2)
- Journal Article (7)
- Presentation (1)
Publication year
- Between 2000 and 2022 (11)
- Unknown (1)