Your search
Topic
Publication year
Results
12 resources-
Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., & Carbin, M. (2019). Reactive Probabilistic Programming. ArXiv:1908.07563 [Cs]. Retrieved from http://arxiv.org/abs/1908.07563
-
Wilkinson, D. (2019, August 7). Write your own general-purpose monadic probabilistic programming language from scratch in 50 lines of (Scala) code. Retrieved November 27, 2019, from https://darrenjw.wordpress.com/2019/08/07/write-your-own-general-purpose-monadic-probabilistic-programming-language-from-scratch-in-50-lines-of-scala-code/
-
Law, J., & Wilkinson, D. (2019). Functional probabilistic programming for scalable Bayesian modelling. ArXiv:1908.02062 [Stat]. Retrieved from http://arxiv.org/abs/1908.02062
-
Dal Lago, U., & Hoshino, N. (2019). The Geometry of Bayesian Programming (pp. 1–13). https://doi.org/10/ggdk85
-
Winn, J. M. (2019). Model-Based Machine Learning. Taylor & Francis Incorporated.
-
Wilkinson, D. (2019). A compositional approach to scalable Bayesian computation and probabilistic programming.
-
Ścibior, A., Kammar, O., & Ghahramani, Z. (2018). Functional programming for modular Bayesian inference. Proceedings of the ACM on Programming Languages, 2(ICFP), 1–29. https://doi.org/10/gft39x
-
Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017). Deep Probabilistic Programming. ArXiv:1701.03757 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1701.03757
-
Ścibior, A., Ghahramani, Z., & Gordon, A. D. (2015). Practical Probabilistic Programming with Monads. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell (pp. 165–176). New York, NY, USA: ACM. https://doi.org/10/gft39z
-
Hur, C.-K., Nori, A. V., & Rajamani, S. K. (2015). A Provably Correct Sampler for Probabilistic Programs, 21.
-
Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10/gdxwhq
-
Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. CRC Press.
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (1)
CATEGORICAL LOGIC
- Linear logic (1)
DIFFERENTIAL CALCULUS
- Differentiation (1)
MACHINE LEARNING
- Machine Learning (3)
MODEL CHECKING AND STATE MACHINES
- Rewriting theory (2)
- Transition systems (2)
PROBABILITY & STATISTICS
- Bayesian inference (12)
PROGRAMMING LANGUAGES
Methodology
- Implementation (10)
Topic
- Automatic differentiation (1)
- Bayesian inference
- Biology (1)
- Classical ML (2)
- Denotational semantics (2)
- Differentiation (1)
- Implementation (10)
- Linear logic (1)
- Machine learning (2)
- Probabilistic programming (11)
- Programming language theory (6)
- Rewriting theory (2)
- Systems biology (1)
- Transition systems (2)
Resource type
- Blog Post (1)
- Book (2)
- Conference Paper (2)
- Journal Article (6)
- Presentation (1)