Your search
PROBABILITY & STATISTICS
Results
30 resources-
Heckerman, D. (1995). A Tutorial on Learning With Bayesian Networks. Retrieved from https://www.microsoft.com/en-us/research/publication/a-tutorial-on-learning-with-bayesian-networks/
-
Wermuth, N., & Cox, D. R. (2001). Graphical Models: Overview. In N. J. Smelser & P. B. Baltes (Eds.), International Encyclopedia of the Social & Behavioral Sciences (pp. 6379–6386). Oxford: Pergamon. https://doi.org/10.1016/B0-08-043076-7/00440-X
-
McCullagh, P. (2002). What is a statistical model? The Annals of Statistics, 30(5), 1225–1310. https://doi.org/10/bkts3m
-
Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. CRC Press.
-
Watanabe, S. (2009, August). Algebraic Geometry and Statistical Learning Theory. https://doi.org/10.1017/CBO9780511800474
-
Fong, B. (2013). Causal Theories: A Categorical Perspective on Bayesian Networks. ArXiv:1301.6201 [Math]. Retrieved from http://arxiv.org/abs/1301.6201
-
Culbertson, J., & Sturtz, K. (2013). Bayesian machine learning via category theory. ArXiv:1312.1445 [Math]. Retrieved from http://arxiv.org/abs/1312.1445
-
Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10/gdxwhq
-
Hur, C.-K., Nori, A. V., & Rajamani, S. K. (2015). A Provably Correct Sampler for Probabilistic Programs, 21.
-
Ścibior, A., Ghahramani, Z., & Gordon, A. D. (2015). Practical Probabilistic Programming with Monads. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell (pp. 165–176). New York, NY, USA: ACM. https://doi.org/10/gft39z
-
Jacobs, B., & Adams, R. (2015). A Type Theory for Probabilistic and Bayesian Reasoning. ArXiv:1511.09230 [Cs, Math]. Retrieved from http://arxiv.org/abs/1511.09230
-
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, 525–534. https://doi.org/10/ggdf97
-
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb
-
Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc
-
Staton, S. (2017). Commutative Semantics for Probabilistic Programming. In H. Yang (Ed.), Programming Languages and Systems (Vol. 10201, pp. 855–879). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54434-1_32
-
Clerc, F., Danos, V., Dahlqvist, F., & Garnier, I. (2017). Pointless learning (long version). Retrieved from https://hal.archives-ouvertes.fr/hal-01429663
-
Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017). Deep Probabilistic Programming. ArXiv:1701.03757 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1701.03757
-
Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., … Ghahramani, Z. (2017). Denotational validation of higher-order Bayesian inference. Proceedings of the ACM on Programming Languages, 2(POPL), 1–29. https://doi.org/10.1145/3158148
-
Jacobs, B., & Zanasi, F. (2018). The Logical Essentials of Bayesian Reasoning. ArXiv:1804.01193 [Cs]. Retrieved from http://arxiv.org/abs/1804.01193
-
Ścibior, A., Kammar, O., & Ghahramani, Z. (2018). Functional programming for modular Bayesian inference. Proceedings of the ACM on Programming Languages, 2(ICFP), 1–29. https://doi.org/10/gft39x
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (1)
CATEGORICAL LOGIC
- Effectus theory (2)
- Linear logic (1)
DIFFERENTIAL CALCULUS
- Differentiation (1)
MACHINE LEARNING
- Machine Learning (10)
MODEL CHECKING AND STATE MACHINES
- Rewriting theory (2)
- Transition systems (2)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
- Programming language theory (17)
- Type theory (1)
Methodology
- Compendium (1)
- Implementation (12)
Topic
- Algebra (1)
- Automatic differentiation (1)
- Bayesian inference (12)
- Bayesianism (15)
- Biology (1)
- Categorical ML (4)
- Categorical probability theory (9)
- Classical ML (4)
- Compendium (1)
- Denotational semantics (2)
- Differentiation (1)
- Effectus theory (2)
- Implementation (11)
- Linear logic (1)
- Machine learning (5)
- Probabilistic programming (13)
- Programming language theory (10)
- Purely theoretical (4)
- Rewriting theory (2)
- Semantics (4)
- Statistical learning theory (2)
- Systems biology (1)
- Transition systems (2)
- Type theory (1)
Resource type
- Blog Post (1)
- Book (2)
- Book Section (2)
- Conference Paper (2)
- Journal Article (20)
- Manuscript (1)
- Presentation (1)
- Web Page (1)