Your search
PROGRAMMING LANGUAGES
Online resource
Results
47 resources-
Wilkinson, D. (2019, August 7). Write your own general-purpose monadic probabilistic programming language from scratch in 50 lines of (Scala) code. Retrieved November 27, 2019, from https://darrenjw.wordpress.com/2019/08/07/write-your-own-general-purpose-monadic-probabilistic-programming-language-from-scratch-in-50-lines-of-scala-code/
-
Boutillier, P., Maasha, M., Li, X., Medina-Abarca, H. F., Krivine, J., Feret, J., … Fontana, W. (2018). The Kappa platform for rule-based modeling. Bioinformatics, 34(13), i583–i592. https://doi.org/10/gdrhw6
-
Ehrhard, T., & Regnier, L. (2003). The differential lambda-calculus. Theoretical Computer Science, 309(1), 1–41. https://doi.org/10/bf3b8v
-
Vytiniotis, D., Belov, D., Wei, R., Plotkin, G., & Abadi, M. (2019). The Differentiable Curry. Retrieved from https://openreview.net/forum?id=ryxuz9SzDB
-
Castellan, S., Clairambault, P., Paquet, H., & Winskel, G. (2018). The concurrent game semantics of Probabilistic PCF. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’18 (pp. 215–224). Oxford, United Kingdom: ACM Press. https://doi.org/10/ggdjfz
-
Ehrhard, T., Pagani, M., & Tasson, C. (2011). The Computational Meaning of Probabilistic Coherence Spaces. In 2011 IEEE 26th Annual Symposium on Logic in Computer Science (pp. 87–96). Toronto, ON, Canada: IEEE. https://doi.org/10/cpv52n
-
Engeler, E. (1995). The Combinatory Programme. Birkhäuser Basel. https://doi.org/10.1007/978-1-4612-4268-0
-
Fiore, M., Gambino, N., Hyland, M., & Winskel, G. (2008). The cartesian closed bicategory of generalised species of structures. Journal of the London Mathematical Society, 77(1), 203–220. https://doi.org/10/bd2mr9
-
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, 525–534. https://doi.org/10/ggdf97
-
Tix, R., Keimel, K., & Plotkin, G. (2009). Semantic Domains for Combining Probability and Non-Determinism. Electronic Notes in Theoretical Computer Science, 222, 3–99. https://doi.org/10/d9hwq7
-
Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., & Carbin, M. (2019). Reactive Probabilistic Programming. ArXiv:1908.07563 [Cs]. Retrieved from http://arxiv.org/abs/1908.07563
-
Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10/gdxwhq
-
Ehrhard, T., & Danos, V. (2011). Probabilistic coherence spaces as a model of higher-order probabilistic computation. Information and Computation, 209(6), 966–991. https://doi.org/10/ctfch6
-
Ehrhard, T., Tasson, C., & Pagani, M. (2014). Probabilistic coherence spaces are fully abstract for probabilistic PCF. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’14 (pp. 309–320). San Diego, California, USA: ACM Press. https://doi.org/10/ggdf9x
-
Ehrhard, T., & Tasson, C. (2018). Probabilistic call by push value. ArXiv:1607.04690 [Cs]. https://doi.org/10/ggdk8z
-
Keimel, K., & Plotkin, G. d. (2009). Predicate Transformers for Extended Probability and Non-determinism. Mathematical. Structures in Comp. Sci., 19(3), 501–539. https://doi.org/10/bkvgqc
-
Ścibior, A., Ghahramani, Z., & Gordon, A. D. (2015). Practical Probabilistic Programming with Monads. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell (pp. 165–176). New York, NY, USA: ACM. https://doi.org/10/gft39z
-
Keimel, K., & Plotkin, G. D. (2017). Mixed powerdomains for probability and nondeterminism. ArXiv:1612.01005 [Cs]. https://doi.org/10/ggdmrp
-
Ehrhard, T., Pagani, M., & Tasson, C. (2017). Measurable Cones and Stable, Measurable Functions. Proceedings of the ACM on Programming Languages, 2(POPL), 1–28. https://doi.org/10/ggdjf8
-
Murfet, D., Clift, J., Doryn, D., & Wallbridge, J. (2019). Logic and the $2$-Simplicial Transformer. ArXiv:1909.00668 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1909.00668
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
- Biology (3)
CATEGORICAL LOGIC
- Effectus theory (1)
- Linear logic (12)
DIFFERENTIAL CALCULUS
- Differentiation (7)
MACHINE LEARNING
- Machine Learning (9)
MODEL CHECKING AND STATE MACHINES
- Coalgebras (2)
- Rewriting theory (3)
- Symbolic logic (3)
- Transition systems (7)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Implementation (12)
Topic
- Abstract machines (3)
- Algebra (3)
- Automatic differentiation (3)
- Bayesian inference (7)
- Bayesianism (4)
- Biology (3)
- Categorical ML (3)
- Categorical probability theory (3)
- Classical ML (1)
- Coalgebras (2)
- Coherence spaces (4)
- Denotational semantics (16)
- Differential Linear Logic (3)
- Differentiation (7)
- Effectus theory (1)
- Game semantics (2)
- Implementation (12)
- Interactive semantics (3)
- Linear logic (9)
- Machine learning (7)
- Powerdomains (4)
- Probabilistic programming (23)
- Probabilistic transition systems (2)
- Programming language theory (26)
- Purely theoretical (1)
- Rewriting theory (3)
- Semantics (10)
- Symbolic logic (3)
- Systems biology (3)
- Transition systems (2)
- Type theory (1)
Resource type
- Blog Post (1)
- Book (1)
- Book Section (1)
- Computer Program (4)
- Conference Paper (5)
- Journal Article (35)