Your search
DIFFERENTIAL CALCULUS
Results
18 resources-
Vytiniotis, D., Belov, D., Wei, R., Plotkin, G., & Abadi, M. (2019). The Differentiable Curry. Retrieved from https://openreview.net/forum?id=ryxuz9SzDB
-
Law, J., & Wilkinson, D. (2019). Functional probabilistic programming for scalable Bayesian modelling. ArXiv:1908.02062 [Stat]. Retrieved from http://arxiv.org/abs/1908.02062
-
Blute, R. F., Cockett, J. R. B., Lemay, J.-S. P., & Seely, R. A. G. (2019). Differential Categories Revisited. Applied Categorical Structures. https://doi.org/10/ggdm44
-
Jacobs, B., & Sprunger, D. (2019). The differential calculus of causal functions. ArXiv:1904.10611 [Cs]. Retrieved from http://arxiv.org/abs/1904.10611
-
Ehrhard, T. (2019). Differentials and distances in probabilistic coherence spaces. ArXiv:1902.04836 [Cs]. Retrieved from http://arxiv.org/abs/1902.04836
-
Murfet, D., & Clift, J. (2019). Derivatives of Turing machines in Linear Logic. ArXiv:1805.11813 [Math]. Retrieved from http://arxiv.org/abs/1805.11813
-
Sprunger, D., & Katsumata, S. (2019). Differentiable Causal Computations via Delayed Trace. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (pp. 1–12). Vancouver, BC, Canada: IEEE. https://doi.org/10/ggdf98
-
Kerjean, M., & Pacaud Lemay, J.-S. (2019). Higher-Order Distributions for Differential Linear Logic. In M. Bojańczyk & A. Simpson (Eds.), Foundations of Software Science and Computation Structures (pp. 330–347). Cham: Springer International Publishing. https://doi.org/10/ggdmrj
-
Elliott, C. (2018). The simple essence of automatic differentiation. ArXiv:1804.00746 [Cs]. Retrieved from http://arxiv.org/abs/1804.00746
-
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine learning: a survey. ArXiv:1502.05767 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1502.05767
-
Kammar, O., Staton, S., & Vákár, M. (2018). Diffeological Spaces and Denotational Semantics for Differential Programming.
-
Ehrhard, T. (2016). An introduction to Differential Linear Logic: proof-nets, models and antiderivatives. ArXiv:1606.01642 [Cs]. Retrieved from http://arxiv.org/abs/1606.01642
-
Manzyuk, O. (2012). A Simply Typed λ-Calculus of Forward Automatic Differentiation. Electronic Notes in Theoretical Computer Science, 286, 257–272. https://doi.org/10/ggdm57
-
Blute, R., Ehrhard, T., & Tasson, C. (2010). A convenient differential category. ArXiv:1006.3140 [Cs, Math]. Retrieved from http://arxiv.org/abs/1006.3140
-
Fiore, M., Gambino, N., Hyland, M., & Winskel, G. (2008). The cartesian closed bicategory of generalised species of structures. Journal of the London Mathematical Society, 77(1), 203–220. https://doi.org/10/bd2mr9
-
Fiore, M. P. (2007). Differential Structure in Models of Multiplicative Biadditive Intuitionistic Linear Logic. In S. R. Della Rocca (Ed.), Typed Lambda Calculi and Applications (pp. 163–177). Berlin, Heidelberg: Springer. https://doi.org/10/c8vgx8
-
Ehrhard, T., & Regnier, L. (2006). Differential interaction nets. Theoretical Computer Science, 364(2), 166–195. https://doi.org/10/bg5g4b
-
Ehrhard, T., & Regnier, L. (2003). The differential lambda-calculus. Theoretical Computer Science, 309(1), 1–41. https://doi.org/10/bf3b8v
Explore
CATEGORICAL LOGIC
- Linear logic (10)
DIFFERENTIAL CALCULUS
MACHINE LEARNING
- Machine Learning (3)
MODEL CHECKING AND STATE MACHINES
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Implementation (2)
Topic
- Abstract machines (1)
- Automatic differentiation (7)
- Bayesian inference (1)
- Categorical ML (2)
- Classical ML (1)
- Coherence spaces (1)
- Denotational semantics (4)
- Differential Linear Logic (8)
- Differentiation (18)
- Implementation (2)
- Linear logic (10)
- Machine learning (2)
- Probabilistic programming (2)
- Programming language theory (6)
Resource type
- Conference Paper (3)
- Journal Article (14)
- Presentation (1)