Your search
Author or contributor
Publication year
Results
6 resources-
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16, 525–534. https://doi.org/10/ggdf97
-
Heunen, C., Kammar, O., Staton, S., & Yang, H. (2017). A Convenient Category for Higher-Order Probability Theory. ArXiv:1701.02547 [Cs, Math]. Retrieved from http://arxiv.org/abs/1701.02547
-
Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., … Ghahramani, Z. (2017). Denotational validation of higher-order Bayesian inference. Proceedings of the ACM on Programming Languages, 2(POPL), 1–29. https://doi.org/10.1145/3158148
-
Kammar, O., Staton, S., & Vákár, M. (2018). Diffeological Spaces and Denotational Semantics for Differential Programming.
-
Ścibior, A., Kammar, O., & Ghahramani, Z. (2018). Functional programming for modular Bayesian inference. Proceedings of the ACM on Programming Languages, 2(ICFP), 1–29. https://doi.org/10/gft39x
-
Vákár, M., Kammar, O., & Staton, S. (2018). A Domain Theory for Statistical Probabilistic Programming. ArXiv:1811.04196 [Cs]. Retrieved from http://arxiv.org/abs/1811.04196
Explore
DIFFERENTIAL CALCULUS
- Differentiation (1)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
- Implementation (1)
Topic
- Automatic differentiation (1)
- Bayesian inference (1)
- Bayesianism (1)
- Differentiation (1)
- Implementation (1)
- Probabilistic programming (2)
- Programming language theory (2)
- Semantics (1)
Resource type
- Journal Article (5)
- Presentation (1)